
Architecture Haiku

George Fairbanks

24 June 2011

Rhino Research
Software Architecture Consulting and Training
http://RhinoResearch.com

24 June 2011 © George Fairbanks – RhinoResearch.com 2

Talk overview

• Architecture descriptions tend to be verbose
• E.g.: Documentation package
• Complete, rather than suggestive

• Problem: We have caviar taste; McDonald’s budget

• Q: What if we only use one page?
• Must use concise language
• High power-to-weight ideas

• A: Architecture Haiku
• Tradeoffs, quality attribute priorities, drivers, design rationales,

constraints, architectural styles

• Future
• Requires shared knowledge: terms, styles
• Will Haiku help architecture education?

http://RhinoResearch.com

24 June 2011 © George Fairbanks – RhinoResearch.com 4

Talk outline

• Introduction
• Conceptual models
• Architecture haiku
• Haiku example: Apache web server
• Group exercise
• Discussion

How I normally give this talk vs today

• Normally:
• To:

• developers / Agilists
• Short-term goals:

• make architecture less scary
• explain some of our thinking
• show value

• Long-term goal:
• bridge Agile and Architecture communities

• Today
• To:

• architecture experts! (No explaining needed)
• Short-term goals:

• share and workshop an idea
• 1-page architecture descriptions

• Long-term goal:
• Same

24 June 2011 © George Fairbanks – RhinoResearch.com 5

About me (George Fairbanks)

• PhD Software Engineering,
Carnegie Mellon University

• Thesis on frameworks and static
analysis (Garlan & Scherlis
advisors)

• Program committee member:
WICSA 2009, ECSA 2010, ICSM
1009; CompArch 2011 local chair

• Architecture and design work at
big financial companies, Nortel,
Time Warner, others

• Teacher of software architecture,
design, OO analysis, EJB

24 June 2011 © George Fairbanks – RhinoResearch.com 6

• Author: Just Enough Software
Architecture

What is software architecture?

• In loose language:
• It’s the macroscopic organization of the system

• Must keep these ideas separate:
• The job title/role “architect”
• The process of architecting/designing (also: when)
• The engineering artifact called the architecture

• Every system has an architecture
• Identify it by looking back (avoids tangling with process & roles)
• E.g., “Aha, I see it is a 3-tier architecture”

• Vary in scale and complexity

24 June 2011 © George Fairbanks – RhinoResearch.com 7

The software architecture of a computing system is the set of structures
needed to reason about the system, which comprise software elements,
relations among them, and properties of both. [Clements et al., DSA2, 2010]

Low complexity & large scale

• Large scale partitioning
• Systematic interconnections
• Repeated patterns

• Comprehensibility: no accident
• Want to verify the OS
• Complexity à no verification

• Low complexity
• Must be chosen
• Unnatural
• Not emergent

• Your brain
• Perhaps very large
• Yet, only so big

24 June 2011 © George Fairbanks – RhinoResearch.com 8

Microsoft Singularity OS architecture

Comprehensibility

High complexity & small scale

24 June 2011 © George Fairbanks – RhinoResearch.com 9

Diagram from Grady Booch, presentation on Software Archaeology

• Q: Are the
blue boxes
encapsulation
boundaries?

§ If yes: can treat
them as black
boxes

§ If no: must
understand their
insides

• Let’s call this manageable complexity.
• ~ 100 classes
• Cannot keep going indefinitely
• If does, Big Ball of Mud

Scale and complexity: summary

• Problem:
• Scale and complexity are increasing
• Hard to tolerate both

• Solution 1:
• Avoid building large, complex systems

• Solution 2:
• Reduce complexity
• … but how?

24 June 2011 © George Fairbanks – RhinoResearch.com 10

Low
Scale

High
Scale

Low
Complexity

Yay!
(Doghouses) OK

High
Complexity OK Danger!

(Mars)

24 June 2011 © George Fairbanks – RhinoResearch.com 11

Idea: Match architecture detail to project

• Projects vary in size and complexity

• Dial of architecture rigor / detail
• doghouse vs battleship

• ATAM vs Haiku – no contest, or horses-for-courses?

• Goldilocks: just right

The Risk-Driven Model

• The Risk-Driven Model:
1. Identify and prioritize risks
2. Apply relevant architecture activities
3. Re-evaluate

• Must balance
• Wasting time on low-impact techniques
• Ignoring project-threatening risks

• Q: On Agile projects,
which architecture activities
should/can you apply?

24 June 2011 © George Fairbanks – RhinoResearch.com 12

Ron ArmsCtrong, CC

What can architects do to help developers?

Regular developers are
turning to Agile

• CompArch/WICSA 2011
attendance: ~150

• Agile 2010 attendance: ~1400

• Good developers are Agilists
• They listen to Kent Beck

instead of Len Bass
• Danger: Our message is

not heard

How Agilists design: Agile
design techniques

• Architectural Spikes / Spike
Solutions

• Domain Driven Design
• Emergent Design /

Evolutionary Design
• CRC Cards
• Design by Contract
• System Metaphor
• Refactoring

24 June 2011 © George Fairbanks – RhinoResearch.com 13

24 June 2011 © George Fairbanks – RhinoResearch.com 14

• Q: What is our message to Agilists? That is, what is it that we want
to teach them to do better?

• A1: Process/roles: BDUF, corner office architects, waterfall

• A2: Paper: Documents, documents, documents

• A3: Equations: Formalisms

• A4: Conceptual model: How architects look at problems and
solve them – a way of thinking and perceiving the world

• A5: Checklists (to get at QAs)

What can architects contribute to Agile?

24 June 2011 © George Fairbanks – RhinoResearch.com 15

• Assume we agree on what architects have to teach Agilists, the next
question is:

• Q: Which of our techniques should transmit our message to Agilists?

• A1. We reuse as-is any architecture techniques

• A2: We invent new Agile-compatible techniques

• My opinion:

• We should transmit our conceptual model of architecture to
Agilists using new Agile-compatible techniques

Then, what’s the vehicle?

24 June 2011 © George Fairbanks – RhinoResearch.com 17

Talk outline

• Introduction
• Conceptual models
• Architecture haiku
• Haiku example: Apache web server
• Group exercise
• Discussion

What is a conceptual model?

• What is a conceptual model?
• A conceptual model is a set of concepts that can be imposed on

raw events to provide meaning and structure.

• It organizes chaos
• Enables intellectual understanding
• Fits big problems into our finite minds

• Synonyms:
• Conceptual framework
• Mental model

24 June 2011 © George Fairbanks – RhinoResearch.com 18

Examples of conceptual models

24 June 2011 © George Fairbanks – RhinoResearch.com 19

Physics: Free Bodies

Econ: Supply & demandEnergy cycle Accounting: Debits & credits

Sports: Plays, strategies,
assignments

Example: is ESP possible?

• How do you organize the world that guides you
to your answer?

• Different conceptual models à different answers

• Similar questions

• Is there fate?

• Is there luck?

• Are there curses?

24 June 2011 © George Fairbanks – RhinoResearch.com 20

With and without

Without

• Just a bunch of raw phenomena

• Doesn't last long -- you will
build a model quickly

• But: will it be an effective
model?

• Why does it rain? Can witch
doctors control it by dancing?

• “The program gets tired and
crashes”

With

• Organizes the phenomena you
encounter

• Helps you anticipate

• Helps you analyze

24 June 2011 © George Fairbanks – RhinoResearch.com 21

Conceptual model of software architecture

• Model relationships
• Views & viewtypes
• Designation
• Refinement

• Canonical model structure
• Domain model
• Design model

• Internals model
• Boundary model

• Code model

• Quality attributes

• Design decisions

• Tradeoffs

• Responsibilities

• Constraints (guide rails)

24 June 2011 © George Fairbanks – RhinoResearch.com 22

• Viewtypes
• Module
• Runtime
• Allocation

• Module viewtype
• Modules
• Dependencies
• Nesting

• Runtime viewtype
• Components
• Connectors
• Ports

• Allocation viewtype
• Environmental element
• Communication channels

Canonical model structure

24 June 2011 © George Fairbanks – RhinoResearch.com 23

D
es

ig
n

Domain
model

Boundary
model

designation

Internals
model

refinement

Code
model

designation

• A domain model expresses the intentions, concepts, and
workings of the domain.

• Omits references to the system to be built
• Is a bridge between engineers and domain experts

• A boundary model expresses the capabilities of the
system.

• Centerpiece is the system to be built
• Focus on system capabilities, not design
• There is a single top-level boundary model

• An internals model expresses the design of the system.
• Refines a boundary model
• Describes assembly of components that conform to

boundary specification

• A code model expresses the solution, either as source
code or an equivalent diagram

• Some design intent lost in code model

Views and styles

• Three primary viewtypes: Module, Runtime, Allocation
• Many views within a viewtype

• Architectural styles
• Big ball of mud
• Client-server
• Pipe-and-filter
• Map-reduce
• N-tier
• …

24 June 2011 © George Fairbanks – RhinoResearch.com 24

Viewtype Contents
Module Modules, Dependencies, Layers, …

Runtime Components, Connectors, Ports, …

Allocation Servers, Communication channels,
…

Engineering with models: Commuting diagram

Mary Shaw's commuting diagram:

24 June 2011 © George Fairbanks – RhinoResearch.com 25

Real-world problem Real-world solution

Model
problem

Model
solution

“A train is traveling south at 10m/s. Another departs 30
minutes later at 15m/s. When do they meet?”

solve

solve

abstract concretize

24 June 2011 © George Fairbanks – RhinoResearch.com 27

Talk outline

• Introduction
• Conceptual models
• Architecture haiku
• Haiku example: Apache web server
• Group exercise
• Discussion

24 June 2011

Architecture presentations: Traditional advice

• You’ve got 60 minutes to give an architecture presentation. What do
you present?

• This will get you started:

• Module view(s)
• Code organization, layers, DB schemas

• Runtime view(s)
• Running system + collaborating systems
• Connections and properties

• Deployment view(s)
• Hardware, network, topology, etc.

Viewtype Contents

Module Modules, Dependencies, Layers

Runtime Components, Connectors, Ports

Allocation Servers, Communication channels

28© George Fairbanks – RhinoResearch.com

24 June 2011 © George Fairbanks – RhinoResearch.com 29

Idea: Architecture Haiku

• Goal: Best 1-page architecture description

• What to include?
• High power-to-weight items
• Items that promote insight, not comprehensiveness

• Techniques
• Concise language (e.g., technical terms)
• Document differences
• Hints at critical junctions

• Implications (i.e., who can read the haiku?)
• Need shared technical terms
• Need shared conceptual model

24 June 2011 © George Fairbanks – RhinoResearch.com 30

Haiku Contents

• Solution description
• Tradeoffs
• Quality attribute priorities
• Architecture drivers (QA scenarios)
• Design rationales
• Constraints
• Architecture styles
• Diagrams

24 June 2011 © George Fairbanks – RhinoResearch.com 31

1. Solution description

• Simple text describing the system

• Good to include:
• Most important functions
• Goals

• Challenges
• Verbosity

• Examples
• XBMC is a cross-platform music and video player that supports

every major media format.
• LyX is a structured document processor, suitable for technical

writing, that uses LaTeX to render professional-quality PDFs.

24 June 2011 © George Fairbanks – RhinoResearch.com 32

2. Tradeoffs

• Tradeoff: More of this à less of that

• Examples

• Portability vs. playback efficiency. Platform-specific resources
(e.g., dedicated hardware) often provide media playback
benefits, including efficiency, yet using these resources ties the
software to that platform

• Weight vs. speed. The heavier a car is, the slower it
accelerates.

• Everything trades off against cost

24 June 2011 © George Fairbanks – RhinoResearch.com 33

QA tradeoffs

• Domain tradeoffs or system-specific tradeoffs
• Arise from domain quirk, or particular design

• Generic quality attribute tradeoffs
• E.g., generally efficiency trades off against maintainability

Table from Wiegers, Software Requirements, 2003, via Morgan “Implementing System Quality Attributes”, 2007.

24 June 2011 © George Fairbanks – RhinoResearch.com 34

3. Quality attribute priorities

• Goal: Prioritized list of quality attributes
• Some QA's likely not relevant, or very low priority
• Some QA's critical to project success

• For credit card processing:
• Security > latency > throughput

• For an MP3 player:
• Usability > audio fidelity > extensibility

• Make an argument for different prioritizations
• What factors influence the prioritization?

24 June 2011 © George Fairbanks – RhinoResearch.com 35

4. QA scenario structure

QA Scenario Templates

• Basic template: stimulus and response
• Stimulus: agent or situation that

triggers scenario
• Response: reaction to stimulus

• Ideal template: Add source, environment,
response measure

• Stimulus: as above
• Response: as above
• Source: Who/what creates stimulus
• Environment: mode of the system.

E.g., normal or low demand.
• Response measure: testable response

(e.g., “happens in 2ms”)

QA Scenario Examples

• Basic scenario: System allows
rapid scanning of book copies.

• Ideal scenario: Under normal
conditions, when a librarian
scans a book copy for
checkout, the system updates
its records and is ready to
scan the next one within 0.25
seconds.

QA scenarios from Bass et al., Software Architecture in Practice, 2003

24 June 2011 © George Fairbanks – RhinoResearch.com 36

Architecture drivers

Architecture Drivers

• Each QA scenario can be graded by:
• Importance to stakeholder

(high, medium, low)
• Difficulty to implement (high,

medium, low)

• Architecture drivers are
• QA scenarios
• or functional scenarios (eg use

cases)
• that are rated (H,H)

Examples

• S1 (H,H): When a librarian scans a
book copy for checkout, the system
updates its records and is ready to
scan the next one within 0.25
seconds.

• S2 (M,H): When librarian station
cannot contact the main system,
librarians can continue to check
books in and out.

24 June 2011 © George Fairbanks – RhinoResearch.com 37

5. Design rationales

• Design rationales explain why
• They should align with your quality attribute priorities

<x> is a priority, so we chose design <y>, accepting
downside <z>.

• An example:

• Since avoiding vendor lock-in is a high priority, we choose to use
a standard industry framework with multiple vendor
implementations, even though using vendor-specific extensions
would give us greater performance.

• But: Good intentions can go awry
• E.g., performance optimization hindering modifiability

24 June 2011 © George Fairbanks – RhinoResearch.com 38

6. Constraints (Guiderails)

• Developers voluntarily constrain systems
• Counter-intuitive
• Ensures what a system does not do
• I.e., guiderails

• Constraints help ensure outcomes
• E.g., ensure quality attributes are met
• No constraints = no analysis

• Examples
• Plugins must use cross-platform API to read files à portability
• EJBeans must not start own threads à manageability
• EJBeans must not write local files à distribution

24 June 2011 © George Fairbanks – RhinoResearch.com 39

7. Architectural styles

• Examples
• Big ball of mud
• Client-server
• Pipe-and-filter
• Map-reduce
• N-tier
• Layered
• …

• Each predefines
• Elements (e.g., pipes, map functions)
• Constraints, …

• Benefits
• Known tradeoffs
• Known suitability
• Compact term for communication

24 June 2011 © George Fairbanks – RhinoResearch.com 40

8. Diagrams

• Three primary viewtypes: Module, Runtime, Allocation
• Many views within a viewtype
• View suitability

• Challenge
• Remember: Just one page!
• Small diagrams only

Viewtype Contents

Module Modules, Dependencies, Layers

Runtime Components, Connectors, Ports

Allocation Servers, Communication channels

24 June 2011 © George Fairbanks – RhinoResearch.com 42

Talk outline

• Introduction
• Conceptual models
• Architecture haiku
• Haiku example: Apache web server
• Group exercise
• Discussion

24 June 2011 © George Fairbanks – RhinoResearch.com 43

The Apache Web Server

• History
• Evolved from UIUC NCSA server

• Users
• From Hosting providers to mom-and-pop

• Notable characteristics
• Cross-platform (via Apache Portable Runtime layer)
• Extensible (via pluggable modules)
• Configurable (via text files)
• Interoperable (e.g., with app servers)

24 June 2011 © George Fairbanks – RhinoResearch.com 44

Apache as a Haiku

1. Description
• The Apache HTTP Server serves web pages/requests, is

extensible by third parties, and integrates with procedural code
(e.g. CGI scripts, app servers)

2. Tradeoffs
• Textual over GUI config: ssh access; scriptability
• Configurability over usability: for professional sysadmins;

expert over casual use
• Extensibility over performance: distributed OSS creation of new

modules

3. Top 3 quality attributes, prioritized
• Extensibility > Configurability > Performance

4. Architecture drivers
• Third party writes a new extension module in 1 week
• ISP configures new virtual host via script
• Server ported to new operating system in 1 month

24 June 2011 © George Fairbanks – RhinoResearch.com 45

Apache as a Haiku

5. Design rationales
• Since extensibility is more important than performance, modules

are dynamically configured to process requests, potentially
increasing latency

6. Constraints (guide rails)
• All OS calls must go through Apache Portable Runtime layer

7. Architectural styles
• Client-server: Browsers to main web server
• Pipe-and-filter: Requests and responses processed through

network of filter modules (e.g., URL rewrite, compress)

8. Diagrams
• Next pages

24 June 2011 © George Fairbanks – RhinoResearch.com 46

Client-server diagram

• Apache, with clients and
administration

• Runtime viewtype

• Diagram not surprising
enough to include

Diagram from: Apache Modeling Project:
Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel, Oliver Schmidt
http://www.fmc-modeling.org/category/projects/apache/amp/Apache_Modeling_Project.html

http://www.fmc-modeling.org/category/projects/apache/amp/Apache_Modeling_Project.html

24 June 2011 © George Fairbanks – RhinoResearch.com 47

Pipe-and-filter diagram

• Request processing
• Apache (dynamically) processes requests

• Input pipeline
• Output pipeline

• Note: Runtime viewtype

• Perhaps worthy to include

Diagram from: Apache Modeling Project:
Bernhard Gröne, Andreas Knöpfel, Rudolf Kugel, Oliver Schmidt
http://www.fmc-modeling.org/category/projects/apache/amp/Apache_Modeling_Project.html

24 June 2011 © George Fairbanks – RhinoResearch.com 49

Talk outline

• Introduction
• Conceptual models
• Architecture haiku
• Haiku example: Apache web server
• Group exercise
• Discussion

http://www.fmc-modeling.org/category/projects/apache/amp/Apache_Modeling_Project.html

24 June 2011

Airport screening exercise

Choose your descriptions from this list:

1.Solution description
2.Tradeoffs
3.Quality attribute priorities
4.Architecture drivers (QA scenarios)
5.Design rationales
6.Constraints (guide rails)
7.Architecture styles
8.Diagrams

Tips

• Incomplete descriptions
• Suggestive, not comprehensive
• Hints at critical junctions

© George Fairbanks – RhinoResearch.com 50

24 June 2011 © George Fairbanks – RhinoResearch.com 52

Talk outline

• Introduction
• Conceptual models
• Architecture haiku
• Haiku example: Apache web server
• Group exercise
• Discussion

24 June 2011 © George Fairbanks – RhinoResearch.com 53

Implications & future

• Role of architecture
• Acts as skeleton
• Makes QA’s easy or hard to achieve
• Today, often ignored

• Assumed architectural knowledge
• Terminology (style names, components, connectors, …)
• Deltas

• Learning from (Haiku) examples
• Imagine a book of Haiku examples
• OSS rarely documents architecture
• Let’s build a catalog (email me)

• Candidate agile technical practice

24 June 2011

Shameless plugging

• E-book
• One price, 3 formats
• PDF, ePub, Mobi
• No DRM
• RhinoResearch.com $25

• Hardback
• Amazon.com $39.75

© George Fairbanks – RhinoResearch.com 55

