
Praise for Just Enough Software Architecture: A Risk-Driven Approach

If you’re going to read only one book on software architecture, start with this one.
Just Enough Software Architecture covers the essential concepts of software architec-
ture that everyone — programmers, developers, testers, architects, and managers —
needs to know; and it provides pragmatic advice that can be put into practice within
hours of reading.

—Michael Keeling, professional software engineer

This book reflects the author’s rare mix of deep knowledge of software architecture
concepts and extensive industry experience as a developer. If you’re an architect, you
will want the developers in your organization to read this book. If you’re a developer,
do read it. The book is about architecture in real (not ideal) software projects. It
describes a context that you’ll recognize and then it shows you how to improve your
design practice in that context.

—Paulo Merson, practicing software architect and
Visiting Scientist at the Software Engineering Institute

Fairbanks’ focus on “just enough” architecture should appeal to any developers
trying to work out how to make the architecting process tractable. This focus is made
accessible through detailed examples and advice that illustrate how an understand-
ing of risk can be used to manage architecture development and scope. At the same
time, Fairbanks provides detail on the more academic aspects of software architec-
ture, which should help developers who are interested in understanding the broader
theory and practice to apply these concepts to their projects.

—Dr. Bradley Schmerl, Senior Systems Scientist, School of
Computer Science, Carnegie Mellon University

The Risk-Driven Model approach described in George Fairbanks’ Just Enough Soft-
ware Architecture has been applied to the eXtensible Information Modeler (XIM)
project here at the NASA Johnson Space Center (JSC) with much success. It is a
must for all members of the project, from project management to individual develop-
ers. In fact, it is a must for every developer’s tool belt. The Code Model section and
the anti-patterns alone are worth the cost of the book!.

—Christopher Dean, Chief Architect, XIM,
Engineering Science Contract Group – NASA Johnson Space Center

Just Enough Software Architecture will coach you in the strategic and tactical appli-
cation of the tools and strategies of software architecture to your software projects.
Whether you are a developer or an architect, this book is a solid foundation and
reference for your architectural endeavors.

—Nicholas Sherman, Program Manager, Microsoft

Fairbanks synthesizes the latest thinking on process, lifecycle, architecture, model-
ing, and quality of service into a coherent framework that is of immediate applicability
to IT applications. Fairbanks’ writing is exceptionally clear and precise while remain-
ing engaging and highly readable. Just Enough Software Architecture is an important
contribution to the IT application architecture literature and may well become a stan-
dard reference work for enterprise application architects.

—Dr. Ian Maung, former Senior VP of Enterprise Architecture at Citigroup
and Director of Enterprise Architecture at Covance

This book directly tackles some key needs of software practitioners who seek
that blend of tools to help them create more effective systems, more effectively.
George reaches frequently into his own experience, combining important ideas from
academia to provide a conceptual model, selected best practices from industry to
broaden coverage, and pragmatic guidance to make software architectures that are
ultimately more useful and realistic. His simple risk-based approach frames much of
the book and helps calibrate what “just-enough” should be. This book is an important
addition to any software architecture bookshelf.

—Desmond D’Souza, Author of MAp and Catalysis, Kinetium, Inc.

This book shows how software architecture helps you build software instead of
distracting from the job; the book lets you identify and address only those critical
architectural concerns that would otherwise prevent you from writing code.

—Dr. Kevin Bierhoff, professional software engineer

System and software developers asking questions about why and where about
software architecture will appreciate the clear arguments and enlightening analogies
this book presents; developers struggling with when and how to do architecture will
discover just-enough guidance, along with concepts and ideas that clarify, empower,
and liberate. All in all, this book is easy to read, concise, yet rich with references — a
well-architected and finely-designed book!

—Dr. Shang-Wen Cheng, flight software engineer

Just Enough
Software
Architecture

A Risk-Driven Approach

George Fairbanks

Many designations used by sellers and manufacturers to distinguish their products
are claimed as trademarks. In cases where Marshall & Brainerd is aware of a claim,
the designations appear in initial capital or all capital letters.

The author and publisher have taken care in the preparation of this book but no
warranty of any kind is expressed or implied. The author and publisher assume no
responsibility for errors or omissions, nor do they assume any liability for incidental
or consequential damages connected with or arising out of the use of the content of
this book.

Marshall & Brainerd Publishing
2445 7th Street
Boulder, CO 80304
(303) 834-7760

Copyright © 2010 George Fairbanks

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher.

Library of Congress PCN

ISBN 978-0-9846181-0-1

First printing, August 2010

Foreword

In the 1990s software architecture emerged as an explicit subfield of software engi-
neering when it became widely recognized that getting the architecture right was a
key enabler for creating a software-based system that met its requirements. What
followed was a dizzying array of proposals for notations, tools, techniques, and pro-
cesses to support architectural design and to integrate it into existing software devel-
opment practices.

And yet, despite the existence of this body of material, principled attention to
software architecture has in many cases not found its way into common practice.
Part of the reason for this has been something of a polarization of opinions about
the role that architecture should play. On one side is a school of thought that advo-
cates architecture-focused design, in which architecture plays a pivotal and essential
role throughout the software development process. People in this camp have tended
to focus on detailed and complete architectural designs, well-defined architecture
milestones, and explicit standards for architecture documentation. On the other side
is a school of thought that deemphasizes architecture, arguing that it will emerge
naturally as a by-product of good design, or that it is not needed at all since the archi-
tecture is obvious for that class of system. People in this camp have tended to focus
on minimizing architectural design as an activity separate from implementation, and
on reducing or eliminating architectural documentation.

Clearly, neither of these camps has it right for all systems. Indeed, the central
question that must be asked is “How much explicit architectural design should one
carry out for a given system?”

In this book, George Fairbanks proposes an answer: “Just Enough Architecture.”
One’s first reaction to this might be “Well, duh!” because who would want too much
or too little? But of course there is more to it than that, and it is precisely the detail-
ing of principles for figuring out what “just enough” means that is the thrust of this

vi Foreword

book. As such, it provides a refreshing and non-dogmatic way to approach software
architecture — one with enormous practical value.

Fairbanks argues that the core criterion for determining how much architecture
is enough is risk reduction. Where there is little risk in a design, little architecture
is needed. But when hard system design issues arise, architecture is a tool with
tremendous potential. In this way the book adopts a true engineering perspective on
architecture, in the sense that it directly promotes the consideration of the costs and
benefits in selecting a technique. Specifically, focusing on risk reduction aligns engi-
neering benefits with costs by ensuring that architectural design is used in situations
where it is likely to have the most payoff.

Naturally, there are a lot of secondary questions to answer. Which risks are best
addressed with software architecture? How do you apply architectural design princi-
ples to resolve a design problem? What do you write down about your architectural
commitments so that others know what they are? How can you help ensure that
architectural commitments are respected by downstream implementers?

This book answers all of these questions, and many more, making it a uniquely
practical and approachable contribution to the field of software architecture. For
anyone who must create innovative software systems, for anyone who is faced with
tough decisions about design tradeoffs, for anyone who must find an appropriate
balance between agility and discipline — in short, for almost any software engineer
— this is essential reading.

David Garlan
Professor, School of Computer Science
Director of Professional Software Engineering Programs
Carnegie Mellon University
May 2010

Preface

This is the book I wish I’d had when I started developing software. At the time, there
were books on languages and books on object-oriented programming, but few books
on design. Knowing the features of the C++ language does not mean you can design
a good object-oriented system, nor does knowing the Unified Modeling Language
(UML) imply you can design a good system architecture.

This book is different from other books about software architecture. Here is what
sets it apart:

It teaches risk-driven architecting. There is no need for meticulous designs when
risks are small, nor any excuse for sloppy designs when risks threaten your success.
Many high-profile agile software proponents suggest that some up-front design can
be helpful, and this book describes a way to do just enough architecture. It avoids
the “one size fits all” process tar pit with advice on how to tune your architecture
and design efforts based on the risks you face. The rigor of most techniques can be
adjusted, from quick-and-dirty to meticulous.

It democratizes architecture. You may have software architects at your organiza-
tion — indeed, you may be one of them. Every architect I have met wishes that all
developers understood architecture. They complain that developers do not under-
stand why constraints exist and how seemingly small changes can affect a system’s
properties. This book seeks to make architecture relevant to all software developers,
not just architects.

It cultivates declarative knowledge. There is a difference between being able to hit
a tennis ball and knowing why you are able to hit it, what psychologists refer to as
procedural knowledge versus declarative knowledge. If you are already an expert at
designing and building systems then you will have employed many of the techniques

viii Preface

found here, but this book will make you more aware of what you have been doing
and provide names for the concepts. That declarative knowledge will improve your
ability to mentor novice developers.

It emphasizes the engineering. People who design and build software systems have
to do many things, including dealing with schedules, resource commitments, and
stakeholder needs. Many books on software architecture already cover software de-
velopment processes and organizational structures. This book, in contrast, focuses
on the technical parts of software development and deals with what developers do to
ensure a system works — the engineering. It shows you how to build models and an-
alyze architectures so that you can make principled design tradeoffs. It describes the
techniques software designers use to reason about medium- to large-sized problems
and points out where you can learn specialized techniques in more detail. Conse-
quently, throughout this book, software engineers are referred to as developers, not
differentiating architects from programmers.

It provides practical advice. This book offers a practical treatment of architecture.
Software architecture is a kind of software design, but design decisions influence the
architecture and vice versa. What the best developers do is drill down into obstacles
in detail, understand them, then pop back up to relate the nature of those obsta-
cles to the architecture as a whole. The approach in this book embraces this drill-
down/pop-up behavior by describing models that have various levels of abstraction,
from architecture to data structure design.

About me

My career has been a quest to learn how to build software systems. That quest has
led me to interleave academics with industrial software development. I have the
complete collector’s set of computer science degrees: a BS, an MS, and a PhD (the PhD
is from Carnegie Mellon University, in software engineering). For my thesis, I worked
on software frameworks because they are a problem that many developers face. I
developed a new kind of specification, called a design fragment, to describe how to
use frameworks, and I built an Eclipse-based tool that can validate their correct usage.
I was enormously fortunate to be advised by David Garlan and Bill Scherlis, and to
have Jonathan Aldrich and Ralph Johnson on my committee.

I appreciate academic rigor, but my roots are in industry. I have been a software
developer on projects including the Nortel DMS-100 central office telephone switch,
statistical analysis for a driving simulator, an IT application at Time Warner Telecom-
munications, plug-ins for the Eclipse IDE, and every last stitch of code for my own
web startup company. I tinker with Linux boxes as an amateur system administrator
and have a closet lit by blinking lights and warmed by power supplies. I have sup-

Preface ix

ported agile techniques since their early days — in 1996 I successfully encouraged
my department to switch from a six-month to a two-week development cycle, and in
1998 I started doing test-first development.

Who is this book for?

The primary audience for this book is practicing software developers. Readers should
already know basic software development ideas — things like object-oriented soft-
ware development, the UML, use cases, and design patterns. Some experience with
how real software development proceeds will be exceedingly helpful, because many
of this book’s basic arguments are predicated on common experiences. If you have
seen developers build too much documentation or do too little thinking before cod-
ing, you will know how software development can go wrong and therefore be looking
for remedies like those offered in this book. This book is also suitable as a textbook
in an advanced undergraduate or graduate level course.

Here is what to expect depending on what kind of reader you are:

Greenhorn developers or students. If you already have learned the basic me-
chanics of software development, such as programming languages and data structure
design, and, ideally, have taken a general software engineering class, this book will
introduce you to specific models of software that will help you form a conceptual
model of software architecture. This model will help you make sense of the chaos
of large systems without drawing a lot of diagrams and documentation. It may give
you your first taste of ideas such as quality attributes and architectural styles. You will
learn how to take your understanding of small programs and ramp it up to full indus-
trial scale and quality. It can accelerate your progress toward becoming an effective,
experienced developer.

Experienced developers. If you are good at developing systems then you will invari-
ably be asked to mentor others. However, you may find that you have a somewhat
idiosyncratic perspective on architecture, perhaps using unique diagram notations.
This book will help you improve your ability to mentor others, understand why you
are able to succeed where others struggle, and teach you about standard models,
notations, and names.

Software architects. The role of software architect can be a difficult one when
others in your organization do not understand what you do and why you do it. Not
only will this book teach you techniques for building systems, it will also give you
ways to explain what you are doing and how you are doing it. Perhaps you will even
hand this book to co-workers so that you can better work as teammates.

x Preface

Academics. This book makes several contributions to the field of software archi-
tecture. It introduces the risk-driven model of software architecture, which is a way
of deciding how much architecture and design work to do on a project. It describes
three approaches to architecture: architecture-indifferent design, architecture-focused
design, and architecture hoisting. It integrates the functional camp’s perspective on
architecture with the quality-attribute camp’s, yielding a single conceptual model.
And it introduces the idea of an architecturally-evident coding style that makes your
architecture evident from reading the source code.

Acknowledgments

This book would not have been possible without the generous assistance of many
people. Several worked closely with me on one or more chapters and deserve spe-
cial recognition for their help: Kevin Bierhoff, Alan Birchenough, David Garlan, Greg
Hartman, Ian Maung, Paulo Merson, Bradley Schmerl, and Morgan Stanfield. Oth-
ers suffered through bad early drafts, caught huge numbers of problems, and pro-
vided needed guidance: Len Bass, Grady Booch, Christopher Dean, Michael Dono-
hue, Dan Dvorak, Anthony Earl, Hans Gyllstrom, Tim Halloran, Ralph Hoop, Michael
Keeling, Ken LaToza, Thomas LaToza, Louis Marbel, Andy Myers, Carl Paradis, Paul
Rayner, Patrick Riley, Aamod Sane, Nicholas Sherman, Olaf Zimmermann, and Guido
Zgraggen. Thank you.

I would be remiss if I did not acknowledge all the people who have mentored
me over the years, starting with my parents who provided more support than I can
describe. My professional mentors have included Desmond D’Souza and the gang
from Icon Computing; my thesis advisors, David Garlan and Bill Scherlis; and the
faculty and students at Carnegie Mellon.

The wonderful cover illustration was concieved and drawn by my friend Lisa
Haney (http://LisaHaney.com). Alan Apt has been a source of guidance and support
through the book writing process.

The preparation of this book was done primarily with open source tools, including
the Linux operating system, the LYX document processor, the Memoir LATEX style, the
LATEX document preparation system, the Inkscape drawing editor, and Pavel Hruby’s
Visio UML template.

Contents

Foreword v

Preface vii

Contents xi

1 Introduction 1
1.1 Partitioning, knowledge, and abstractions 2
1.2 Three examples of software architecture 3
1.3 Reflections . 5
1.4 Perspective shift . 6
1.5 Architects architecting architectures 7
1.6 Risk-driven software architecture . 8
1.7 Architecture for agile developers . 9
1.8 About this book . 10

I Risk-Driven Software Architecture 13

2 Software Architecture 15
2.1 What is software architecture? . 16
2.2 Why is software architecture important? 18
2.3 When is architecture important? . 22
2.4 Presumptive architectures . 23
2.5 How should software architecture be used? 24
2.6 Architecture-indifferent design . 25
2.7 Architecture-focused design . 26

xii CONTENTS

2.8 Architecture hoisting . 27
2.9 Architecture in large organizations 30
2.10 Conclusion . 31
2.11 Further reading . 32

3 Risk-Driven Model 35
3.1 What is the risk-driven model? . 37
3.2 Are you risk-driven now? . 38
3.3 Risks . 39
3.4 Techniques . 42
3.5 Guidance on choosing techniques . 44
3.6 When to stop . 47
3.7 Planned and evolutionary design . 48
3.8 Software development process . 51
3.9 Understanding process variations . 53
3.10 The risk-driven model and software processes 55
3.11 Application to an agile processes . 56
3.12 Risk and architecture refactoring . 57
3.13 Alternatives to the risk-driven model 58
3.14 Conclusion . 60
3.15 Further reading . 61

4 Example: Home Media Player 65
4.1 Team communication . 67
4.2 Integration of COTS components . 75
4.3 Metadata consistency . 81
4.4 Conclusion . 86

5 Modeling Advice 89
5.1 Focus on risks . 89
5.2 Understand your architecture . 90
5.3 Distribute architecture skills . 91
5.4 Make rational architecture choices 92
5.5 Avoid Big Design Up Front . 93
5.6 Avoid top-down design . 95
5.7 Remaining challenges . 95
5.8 Features and risk: a story . 97

CONTENTS xiii

II Architecture Modeling 101

6 Engineers Use Models 103
6.1 Scale and complexity require abstraction 104
6.2 Abstractions provide insight and leverage 104
6.3 Reasoning about system qualities . 105
6.4 Models elide details . 106
6.5 Models can amplify reasoning . 107
6.6 Question first and model second . 108
6.7 Conclusion . 108
6.8 Further reading . 109

7 Conceptual Model of Software Architecture 111
7.1 Canonical model structure . 114
7.2 Domain, design, and code models . 115
7.3 Designation and refinement relationships 116
7.4 Views of a master model . 118
7.5 Other ways to organize models . 121
7.6 Business modeling . 121
7.7 Use of UML . 122
7.8 Conclusion . 123
7.9 Further reading . 123

8 The Domain Model 127
8.1 How the domain relates to architecture 128
8.2 Concept model . 131
8.3 Navigation and invariants . 133
8.4 Snapshots . 134
8.5 Functionality scenarios . 135
8.6 Conclusion . 136
8.7 Further reading . 137

9 The Design Model 139
9.1 Design model . 140
9.2 Boundary model . 141
9.3 Internals model . 142
9.4 Quality attributes . 142
9.5 Walkthrough of Yinzer design . 143
9.6 Viewtypes . 157
9.7 Dynamic architecture models . 161
9.8 Architecture description languages 162

xiv CONTENTS

9.9 Conclusion . 163
9.10 Further reading . 164

10 The Code Model 167
10.1 Model-code gap . 167
10.2 Managing consistency . 171
10.3 Architecturally-evident coding style 174
10.4 Expressing design intent in code . 175
10.5 Model-in-code principle . 177
10.6 What to express . 178
10.7 Patterns for expressing design intent in code 180
10.8 Walkthrough of an email processing system 187
10.9 Conclusion . 194

11 Encapsulation and Partitioning 195
11.1 Story at many levels . 195
11.2 Hierarchy and partitioning . 197
11.3 Decomposition strategies . 199
11.4 Effective encapsulation . 203
11.5 Building an encapsulated interface 206
11.6 Conclusion . 210
11.7 Further reading . 211

12 Model Elements 213
12.1 Allocation elements . 214
12.2 Components . 215
12.3 Component assemblies . 219
12.4 Connectors . 223
12.5 Design decisions . 233
12.6 Functionality scenarios . 234
12.7 Invariants (constraints) . 239
12.8 Modules . 240
12.9 Ports . 241
12.10 Quality attributes . 247
12.11 Quality attribute scenarios . 249
12.12 Responsibilities . 251
12.13 Tradeoffs . 253
12.14 Conclusion . 253

13 Model Relationships 255
13.1 Projection (view) relationship . 256

CONTENTS xv

13.2 Partition relationship . 260
13.3 Composition relationship . 261
13.4 Classification relationship . 261
13.5 Generalization relationship . 262
13.6 Designation relationship . 263
13.7 Refinement relationship . 264
13.8 Binding relationship . 268
13.9 Dependency relationship . 269
13.10 Using the relationships . 269
13.11 Conclusion . 269
13.12 Further reading . 271

14 Architectural Styles 273
14.1 Advantages . 274
14.2 Platonic vs. embodied styles . 275
14.3 Constraints and architecture-focused design 276
14.4 Patterns vs. styles . 277
14.5 A catalog of styles . 277
14.6 Layered style . 277
14.7 Big ball of mud style . 280
14.8 Pipe-and-filter style . 281
14.9 Batch-sequential style . 283
14.10 Model-centered style . 285
14.11 Publish-subscribe style . 286
14.12 Client-server style & N-tier . 288
14.13 Peer-to-peer style . 290
14.14 Map-reduce style . 291
14.15 Mirrored, rack, and farm styles . 293
14.16 Conclusion . 294
14.17 Further reading . 295

15 Using Architecture Models 297
15.1 Desirable model traits . 297
15.2 Working with views . 303
15.3 Improving view quality . 306
15.4 Improving diagram quality . 310
15.5 Testing and proving . 312
15.6 Analyzing architecture models . 312
15.7 Architectural mismatch . 318
15.8 Choose your abstraction level . 319
15.9 Planning for the user interface . 320

xvi CONTENTS

15.10 Prescriptive vs. descriptive models 320
15.11 Modeling existing systems . 321
15.12 Conclusion . 322
15.13 Further reading . 323

16 Conclusion 325
16.1 Challenges . 326
16.2 Focus on quality attributes . 330
16.3 Solve problems, not just model them 331
16.4 Use constraints as guide rails . 331
16.5 Use standard architectural abstractions 333

Glossary 335

Bibliography 347

Index 355

