
Praise for Just Enough Software Architecture: A Risk-Driven Approach

If you’re going to read only one book on software architecture, start with this one.
Just Enough Software Architecture covers the essential concepts of software architec-
ture that everyone — programmers, developers, testers, architects, and managers —
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—Christopher Dean, Chief Architect, XIM,
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Whether you are a developer or an architect, this book is a solid foundation and
reference for your architectural endeavors.

—Nicholas Sherman, Program Manager, Microsoft

Fairbanks synthesizes the latest thinking on process, lifecycle, architecture, model-
ing, and quality of service into a coherent framework that is of immediate applicability
to IT applications. Fairbanks’ writing is exceptionally clear and precise while remain-
ing engaging and highly readable. Just Enough Software Architecture is an important
contribution to the IT application architecture literature and may well become a stan-
dard reference work for enterprise application architects.

—Dr. Ian Maung, former Senior VP of Enterprise Architecture at Citigroup
and Director of Enterprise Architecture at Covance

This book directly tackles some key needs of software practitioners who seek
that blend of tools to help them create more effective systems, more effectively.
George reaches frequently into his own experience, combining important ideas from
academia to provide a conceptual model, selected best practices from industry to
broaden coverage, and pragmatic guidance to make software architectures that are
ultimately more useful and realistic. His simple risk-based approach frames much of
the book and helps calibrate what “just-enough” should be. This book is an important
addition to any software architecture bookshelf.

—Desmond D’Souza, Author of MAp and Catalysis, Kinetium, Inc.

This book shows how software architecture helps you build software instead of
distracting from the job; the book lets you identify and address only those critical
architectural concerns that would otherwise prevent you from writing code.

—Dr. Kevin Bierhoff, professional software engineer

System and software developers asking questions about why and where about
software architecture will appreciate the clear arguments and enlightening analogies
this book presents; developers struggling with when and how to do architecture will
discover just-enough guidance, along with concepts and ideas that clarify, empower,
and liberate. All in all, this book is easy to read, concise, yet rich with references — a
well-architected and finely-designed book!

—Dr. Shang-Wen Cheng, flight software engineer
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Foreword

In the 1990s software architecture emerged as an explicit subfield of software engi-
neering when it became widely recognized that getting the architecture right was a
key enabler for creating a software-based system that met its requirements. What
followed was a dizzying array of proposals for notations, tools, techniques, and pro-
cesses to support architectural design and to integrate it into existing software devel-
opment practices.

And yet, despite the existence of this body of material, principled attention to
software architecture has in many cases not found its way into common practice.
Part of the reason for this has been something of a polarization of opinions about
the role that architecture should play. On one side is a school of thought that advo-
cates architecture-focused design, in which architecture plays a pivotal and essential
role throughout the software development process. People in this camp have tended
to focus on detailed and complete architectural designs, well-defined architecture
milestones, and explicit standards for architecture documentation. On the other side
is a school of thought that deemphasizes architecture, arguing that it will emerge
naturally as a by-product of good design, or that it is not needed at all since the archi-
tecture is obvious for that class of system. People in this camp have tended to focus
on minimizing architectural design as an activity separate from implementation, and
on reducing or eliminating architectural documentation.

Clearly, neither of these camps has it right for all systems. Indeed, the central
question that must be asked is “How much explicit architectural design should one
carry out for a given system?”

In this book, George Fairbanks proposes an answer: “Just Enough Architecture.”
One’s first reaction to this might be “Well, duh!” because who would want too much
or too little? But of course there is more to it than that, and it is precisely the detail-
ing of principles for figuring out what “just enough” means that is the thrust of this
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book. As such, it provides a refreshing and non-dogmatic way to approach software
architecture — one with enormous practical value.

Fairbanks argues that the core criterion for determining how much architecture
is enough is risk reduction. Where there is little risk in a design, little architecture
is needed. But when hard system design issues arise, architecture is a tool with
tremendous potential. In this way the book adopts a true engineering perspective on
architecture, in the sense that it directly promotes the consideration of the costs and
benefits in selecting a technique. Specifically, focusing on risk reduction aligns engi-
neering benefits with costs by ensuring that architectural design is used in situations
where it is likely to have the most payoff.

Naturally, there are a lot of secondary questions to answer. Which risks are best
addressed with software architecture? How do you apply architectural design princi-
ples to resolve a design problem? What do you write down about your architectural
commitments so that others know what they are? How can you help ensure that
architectural commitments are respected by downstream implementers?

This book answers all of these questions, and many more, making it a uniquely
practical and approachable contribution to the field of software architecture. For
anyone who must create innovative software systems, for anyone who is faced with
tough decisions about design tradeoffs, for anyone who must find an appropriate
balance between agility and discipline — in short, for almost any software engineer
— this is essential reading.

David Garlan
Professor, School of Computer Science
Director of Professional Software Engineering Programs
Carnegie Mellon University
May 2010



Preface

This is the book I wish I’d had when I started developing software. At the time, there
were books on languages and books on object-oriented programming, but few books
on design. Knowing the features of the C++ language does not mean you can design
a good object-oriented system, nor does knowing the Unified Modeling Language
(UML) imply you can design a good system architecture.

This book is different from other books about software architecture. Here is what
sets it apart:

It teaches risk-driven architecting. There is no need for meticulous designs when
risks are small, nor any excuse for sloppy designs when risks threaten your success.
Many high-profile agile software proponents suggest that some up-front design can
be helpful, and this book describes a way to do just enough architecture. It avoids
the “one size fits all” process tar pit with advice on how to tune your architecture
and design efforts based on the risks you face. The rigor of most techniques can be
adjusted, from quick-and-dirty to meticulous.

It democratizes architecture. You may have software architects at your organiza-
tion — indeed, you may be one of them. Every architect I have met wishes that all
developers understood architecture. They complain that developers do not under-
stand why constraints exist and how seemingly small changes can affect a system’s
properties. This book seeks to make architecture relevant to all software developers,
not just architects.

It cultivates declarative knowledge. There is a difference between being able to hit
a tennis ball and knowing why you are able to hit it, what psychologists refer to as
procedural knowledge versus declarative knowledge. If you are already an expert at
designing and building systems then you will have employed many of the techniques
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found here, but this book will make you more aware of what you have been doing
and provide names for the concepts. That declarative knowledge will improve your
ability to mentor novice developers.

It emphasizes the engineering. People who design and build software systems have
to do many things, including dealing with schedules, resource commitments, and
stakeholder needs. Many books on software architecture already cover software de-
velopment processes and organizational structures. This book, in contrast, focuses
on the technical parts of software development and deals with what developers do to
ensure a system works — the engineering. It shows you how to build models and an-
alyze architectures so that you can make principled design tradeoffs. It describes the
techniques software designers use to reason about medium- to large-sized problems
and points out where you can learn specialized techniques in more detail. Conse-
quently, throughout this book, software engineers are referred to as developers, not
differentiating architects from programmers.

It provides practical advice. This book offers a practical treatment of architecture.
Software architecture is a kind of software design, but design decisions influence the
architecture and vice versa. What the best developers do is drill down into obstacles
in detail, understand them, then pop back up to relate the nature of those obsta-
cles to the architecture as a whole. The approach in this book embraces this drill-
down/pop-up behavior by describing models that have various levels of abstraction,
from architecture to data structure design.

About me

My career has been a quest to learn how to build software systems. That quest has
led me to interleave academics with industrial software development. I have the
complete collector’s set of computer science degrees: a BS, an MS, and a PhD (the PhD
is from Carnegie Mellon University, in software engineering). For my thesis, I worked
on software frameworks because they are a problem that many developers face. I
developed a new kind of specification, called a design fragment, to describe how to
use frameworks, and I built an Eclipse-based tool that can validate their correct usage.
I was enormously fortunate to be advised by David Garlan and Bill Scherlis, and to
have Jonathan Aldrich and Ralph Johnson on my committee.

I appreciate academic rigor, but my roots are in industry. I have been a software
developer on projects including the Nortel DMS-100 central office telephone switch,
statistical analysis for a driving simulator, an IT application at Time Warner Telecom-
munications, plug-ins for the Eclipse IDE, and every last stitch of code for my own
web startup company. I tinker with Linux boxes as an amateur system administrator
and have a closet lit by blinking lights and warmed by power supplies. I have sup-
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ported agile techniques since their early days — in 1996 I successfully encouraged
my department to switch from a six-month to a two-week development cycle, and in
1998 I started doing test-first development.

Who is this book for?

The primary audience for this book is practicing software developers. Readers should
already know basic software development ideas — things like object-oriented soft-
ware development, the UML, use cases, and design patterns. Some experience with
how real software development proceeds will be exceedingly helpful, because many
of this book’s basic arguments are predicated on common experiences. If you have
seen developers build too much documentation or do too little thinking before cod-
ing, you will know how software development can go wrong and therefore be looking
for remedies like those offered in this book. This book is also suitable as a textbook
in an advanced undergraduate or graduate level course.

Here is what to expect depending on what kind of reader you are:

Greenhorn developers or students. If you already have learned the basic me-
chanics of software development, such as programming languages and data structure
design, and, ideally, have taken a general software engineering class, this book will
introduce you to specific models of software that will help you form a conceptual
model of software architecture. This model will help you make sense of the chaos
of large systems without drawing a lot of diagrams and documentation. It may give
you your first taste of ideas such as quality attributes and architectural styles. You will
learn how to take your understanding of small programs and ramp it up to full indus-
trial scale and quality. It can accelerate your progress toward becoming an effective,
experienced developer.

Experienced developers. If you are good at developing systems then you will invari-
ably be asked to mentor others. However, you may find that you have a somewhat
idiosyncratic perspective on architecture, perhaps using unique diagram notations.
This book will help you improve your ability to mentor others, understand why you
are able to succeed where others struggle, and teach you about standard models,
notations, and names.

Software architects. The role of software architect can be a difficult one when
others in your organization do not understand what you do and why you do it. Not
only will this book teach you techniques for building systems, it will also give you
ways to explain what you are doing and how you are doing it. Perhaps you will even
hand this book to co-workers so that you can better work as teammates.
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Academics. This book makes several contributions to the field of software archi-
tecture. It introduces the risk-driven model of software architecture, which is a way
of deciding how much architecture and design work to do on a project. It describes
three approaches to architecture: architecture-indifferent design, architecture-focused
design, and architecture hoisting. It integrates the functional camp’s perspective on
architecture with the quality-attribute camp’s, yielding a single conceptual model.
And it introduces the idea of an architecturally-evident coding style that makes your
architecture evident from reading the source code.
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