
Chapter 3

Risk-Driven Model

As they build successful software, software developers are choosing from alternate
designs, discarding those that are doomed to fail, and preferring options with low
risk of failure. When the risks are low it is easy to plow ahead without much thought,
but, invariably, challenging design problems emerge and developers must grapple
with high-risk designs, ones they are not sure will work.

Building successful software means anticipating possible failures and avoiding de-
signs that could fail. Henry Petroski, a leading historian of engineering, says this
about engineering as a whole:

The concept of failure is central to the design process, and it is by think-
ing in terms of obviating failure that successful designs are achieved. ...
Although often an implicit and tacit part of the methodology of design, fail-
ure considerations and proactive failure analysis are essential for achieving
success. And it is precisely when such considerations and analyses are in-
correct or incomplete that design errors are introduced and actual failures
occur. (Petroski, 1994)

To address failure risks, the earliest software developers invented design techniques
that helped them build successful software, such as domain modeling, security anal-
yses, and encapsulation. Today, developers can choose from a huge number of design
techniques. From this abundance, a hard question arises: Which design and architec-
ture techniques should developers use?

If there were no deadlines then the answer would be easy: use all the techniques.
But that is impractical because a hallmark of engineering is the efficient use of re-



36 CHAPTER 3. RISK-DRIVEN MODEL

sources, including time. One of the risks developers face is that they waste too much
time designing. So a related question arises: How much design and architecture should
developers do?

There is much active debate about this question and several kinds of answers have
been suggested:

• No up-front design. Developers should just write code. Design happens, but is
coincident with coding, and happens at the keyboard rather than in advance.

• Use a yardstick. For example, developers should spend 10% of their time on
architecture and design, 40% coding, 20% integrating, and 30% testing.

• Build a documentation package. Developers should employ a comprehensive
set of design and documentation techniques sufficient to produce a complete
written design document.

• Ad hoc. Developers should react to the project needs and decide on the spot
how much design to do.

The ad hoc approach is perhaps the most common, but it is also subjective and pro-
vides no enduring lessons. Avoiding design altogether is impractical when failure
risks are high, but so is building a complete documentation package when risks are
low. Using a yardstick can help you plan how much effort designing the architecture
will take, but it does not help you choose techniques.

This chapter introduces the risk-driven model of architectural design. The big idea
is that the effort you spend on designing your software architecture should be com-
mensurate with the risks faced by your project. When my father installed a new mail-
box, he did not apply every mechanical engineering analysis and design technique he
knew. Instead, he dug a hole, put in a post, and filled the hole with concrete. The
risk-driven model can help you decide when to apply architecture techniques and
when you can skip them.

Where a software development process orchestrates every activity from require-
ments to deployment, the risk-driven model only guides architectural design, and can
therefore be used inside any software development process.

The risk-driven model is a reaction to a world where developers are under pressure
to build high quality software quickly and at reasonable cost, yet those developers
have more architecture techniques than they can afford to apply. The risk-driven
model helps them answer the two questions above: how much software architecture
work should they do and which techniques should they use? It is an approach that
helps developers follow a middle path, one that avoids wasting time on techniques
that help their projects only a little, but ensures that project-threatening risks are
addressed by appropriate techniques.



3.1. WHAT IS THE RISK-DRIVEN MODEL? 37

In this chapter, we will examine how risk reduction is central to all engineering
disciplines, learn how to choose techniques to reduce risks, understand how engi-
neering risks interact with management risks, and learn how we can balance planned
design with evolutionary design. This chapter walks through the ideas that underpin
the risk-driven model, but if you are the kind of person who would prefer to first see
an example of it in use, you can flip ahead to Chapter 4.

3.1 What is the risk-driven model?

The risk-driven model guides developers to apply a minimal set of architecture tech-
niques to reduce their most pressing risks. It suggests a relentless questioning process:
“What are my risks? What are the best techniques to reduce them? Is the risk miti-
gated and can I start (or resume) coding?” The risk-driven model can be summarized
in three steps:

1. Identify and prioritize risks

2. Select and apply a set of techniques

3. Evaluate risk reduction

Risk or feature focus. The key element of the risk-driven model is the promotion
of risk to prominence. What you choose to promote has an impact. Most devel-
opers already think about risks, but they think about lots of other things too, and
consequently risks can be overlooked. A recent paper described how a team that
had previously done up-front architecture work switched to a purely feature-driven
process. The team was so focused on delivering features that they deferred quality
attribute concerns until after active development ceased and the system was in main-
tenance (Babar, 2009). The conclusion to draw is that teams that focus on features
will pay less attention to other areas, including risks. Earlier studies have shown that
even architects are less focused on risks and tradeoffs than one would expect (Clerc,
Lago and van Vliet, 2007).

You do not want to waste time on low-impact techniques, nor do you want to
ignore project-threatening risks. You want to build successful systems by taking a
path that spends your time most effectively. That means addressing risks by applying
architecture and design techniques but only when they are motivated by risks.

Logical rationale. But what if your perception of risks differs from others’ percep-
tions? Risk identification, risk prioritization, choice of techniques, and evaluation of
risk mitigation will all vary depending on who does them. It may seem that under it
all, the risk-driven model is merely improvisation.



38 CHAPTER 3. RISK-DRIVEN MODEL

Though different developers will perceive risks differently and consequently
choose different techniques, the risk-driven model has the useful property that it
yields arguments that can be evaluated. An example argument would take this form:

We identified A, B, and C as the biggest risks, with B being primary. We
spent time applying techniques X and Y because we believed they would
help us reduce the risk of B. We evaluated the resulting design and decided
that we had sufficiently mitigated the risk of B, so we proceeded on to
coding.

You have answered the broad question, “How much software architecture should you
do?” by providing a plan (i.e., the techniques to apply) based on the relevant context
(i.e., the perceived risks).

Other developers might disagree with your assessment, so they could provide a
differing argument with the same form, perhaps suggesting that risk D be included.
A productive, engineering-based discussion of the risks and techniques can ensue
because the rationale behind your opinion has been articulated and can be evaluated.

3.2 Are you risk-driven now?

Many developers believe that they already follow a risk-driven model, or something
close to it. Yet there are telltale signs that many are not. One is an inability to list the
risks they confront and the corresponding techniques they are applying.

Any developer can answer the question, “Which features are you working on?”
but many have trouble with the question, “What are your primary failure risks and
corresponding engineering techniques?” If risks were indeed primary then it would
be an easy question to answer.

Technique choices should vary. Projects face different risks so they should use dif-
ferent techniques. Some projects will have tricky quality attribute requirements that
need up-front planned design, while other projects are tweaks to existing systems
and entail little risk of failure. Some development teams are distributed and so they
document their designs for others to read, while other teams are co-located and can
reduce this formality.

When developers fail to align their architecture activities with their risks, they
will over-use or under-use architectural techniques, or both. Examining the overall
context of software development suggests why this can occur. Most organizations
guide developers to follow a process with some kind of documentation template or
a list of design activities. These can be beneficial and effective, but they can also
inadvertently steer developers astray.

Here are some examples of well-intentioned rules that guide developers to activi-
ties that may be mismatched with their project’s risks.



3.3. RISKS 39

• The team must always (or never) build full documentation for each system.
• The team must always (or never) build a class diagram, a layer diagram, etc.
• The team must spend 10% (or 0%) of the project time on architecture.

Such guidelines can be better than no guidance, but each project will face a different
set of risks. It would be a great coincidence if the same set of diagrams or techniques
were always the best way to mitigate a changing set of risks.

Example mismatch. Imagine a company that builds a 3-tier system. The first tier has
the user interface, and is exposed to the internet. The biggest risks might be usability
and security. The second and third tiers implement business rules and persistence;
they are behind a firewall. The biggest risks might be throughput and scalability.

If this company followed the risk-driven model, the front-end and back-end de-
velopers would apply different architecture and design techniques to address their
different risks. Instead, what often happens is that both teams follow the same
company-standard process or template and produce, say, a module dependency di-
agram. The problem is that there is no connection between the techniques they use
and the risks they face.

Standard processes or templates are not necessarily bad, but they are often used
poorly. Over time, you may be able to generalize the risks on the projects at your
company and devise a list of appropriate techniques. The important part is that the
techniques match the risks.

The three steps to risk-driven software architecture are deceptively simple but the
devil is in the details. What exactly are risks and techniques? How do you choose an
appropriate set of techniques? And when do you stop architecting and start/resume
building? The following sections dig into these questions in more detail.

3.3 Risks

In the context of engineering, risk is commonly defined as the chance of failure times
the impact of that failure. Both the probability of failure and the impact are uncer-
tain because they are difficult to measure precisely. You can sidestep the distinction
between perceived risks and actual risks by bundling the concept of uncertainty into
the definition of risk. The definition of risk then becomes:

risk = perceived probability of failure × perceived impact

A result of this definition is that a risk can exist (i.e., you can perceive it) even if
it does not exist. Imagine a hypothetical program that has no bugs. If you have
never run the program or tested it, should you worry about it failing? That is, should
you perceive a failure risk? Of course you should, but after you analyze and test
it, you gain confidence in it and your perception of risk goes down. So by applying



40 CHAPTER 3. RISK-DRIVEN MODEL

Project management risks Software engineering risks

“Lead developer hit by bus” “The server may not scale to 1000 users”

“Customer needs not understood” “Parsing of the response messages may be buggy”

“Senior VP hates our manager” “The system is working now but if we touch
anything it may fall apart”

Figure 3.1: Examples of project management and engineering risks. You should distinguish them
because engineering techniques rarely solve management risks, and vice versa.

techniques you can reduce the amount of uncertainty, and therefore the amount of
(perceived) risk. You can also under-appreciate or fail to perceive a risk, which we
will return to shortly.

Describing risks. You can state a risk categorically, often as a quality attribute like
“modifiability” or “reliability”. But often this is too vague to be actionable: if you do
something, are you sure that the categorical risk is actually reduced?

It is better to describe risks such that you can later test to see if they have been
mitigated. Instead of just listing a quality attribute like reliability, describe each risk of
failure as a testable failure scenario, such as “During peak loads, customers experience
user interface latencies greater than five seconds.”

Engineering and project management risks. Projects face many different kinds of
risks so people working on a project tend to pay attention to the risks related to their
specialty. For example, the sales team worries about a good sales strategy and soft-
ware developers worry about a system’s scalability. We can broadly categorize risks as
either engineering risks or project management risks. Engineering risks are those risks
related to the analysis, design, and implementation of the product. These engineering
risks are in the domain of the engineering of the system. Project management risks
relate to schedules, sequencing of work, delivery, team size, geography, etc. Figure
3.1 shows examples of both.

If you are a software developer, you are asked to mitigate engineering risks and
you will be applying engineering techniques. The technique type must match the risk
type, so only engineering techniques will mitigate engineering risks. For example,
you cannot use a PERT chart (a project management technique) to reduce the chance
of buffer overruns (an engineering risk), and Java will not resolve stakeholder dis-
agreements.

Identifying risks. Experienced developers have an easy time identifying risks, but
what can be done if the developer is less experienced or working in an unfamiliar



3.3. RISKS 41

Project domain Prototypical risks

Information Complex, poorly understood problem
Technology (IT) Unsure we’re solving the real problem

May choose wrong COTS software
Integration with existing, poorly understood software
Domain knowledge scattered across people
Modifiability

Systems Performance, reliability, size, security
Concurrency
Composition

Web Security
Application scalability
Developer productivity / expressability

Figure 3.2: While each project can have a unique set of risks, it is possible to generalize by
domain. Prototypical risks are ones that are common in a domain, and are a reason that software
development practices vary by domain. For example, developers on Systems projects tend to use
the highest performance languages.

domain? The easiest place to start is with the requirements, in whatever form they
take, and look for things that seem difficult to achieve. Misunderstood or incomplete
quality attribute requirements are a common risk. You can use Quality Attribute
Workshops (see Section 15.6), a Taxonomy-Based Questionnaire (Carr et al., 1993),
or similar, to elicit risks and produce a prioritized list of failure scenarios.

Even with diligence, you will not be able to identify every risk. When I was a
child, my parents taught me to look both ways before crossing the street because they
identified cars as a risk. It would have been equally bad if I had been hit by a car
or by a falling meteor, but they put their attention on the foreseen and high priority
risk. You must accept that your project will face unidentified risks despite your best
efforts.

Prototypical risks. After you have worked in a domain for a while, you will notice
prototypical risks that are common to most projects in that domain. For example,
Systems projects usually worry more about performance than IT projects and Web
projects worry about security. Prototypical risks may have been encoded as checklists
describing historical problem areas, perhaps generated from architecture reviews.
These checklists (see Section 15.6) are valuable knowledge for less experienced de-
velopers and a helpful reminder for experienced ones.

Knowing the prototypical risks in your domain is a big benefit, but even more



42 CHAPTER 3. RISK-DRIVEN MODEL

important is realizing when your project differs from the norm so that you avoid
blind spots. For example, software that runs a hospital might most closely resemble
an IT project, with its integration concerns and complex domain types. However, a
system that takes 10 minutes to reboot after a power failure is usually a minor risk
for an IT project, but a major risk at a hospital.

Prioritizing risks. Not all risks are equally large, so they can be prioritized. Most de-
velopment teams will prioritize risks by discussing it amongst themselves. This can be
adequate, but the team’s perception of risks may not be the same as the stakeholders’
perception. If your team is spending enough time on software architecture for it to be
noticeable in your budget, it is best to validate that time and money are being spent
in accordance with stakeholder priorities.

Risks can be categorized1 on two dimensions: their priority to stakeholders and
their perceived difficulty by developers. Be aware that some technical risks, such as
platform choices, cannot be easily assessed by stakeholders.

Formal procedures exist for cataloging and prioritizing risks using risk matrices,
including a US military standard MIL-STD-882D. Formal prioritization of risks is ap-
propriate if your system, for example, handles radioactive material, but most com-
puter systems can be less formal.

3.4 Techniques

Once you know what risks you are facing, you can apply techniques that you expect
to reduce the risk. The term technique is quite broad, so we will focus specifically
on software engineering risk reduction techniques, but for convenience continue to use
the simple name technique. Figure 3.3 shows a short list of software engineering
techniques and techniques from other engineering branches.

Spectrum from analyses to solutions. Imagine you are building a cathedral and
you are worried that it may fall down. You could build models of various design
alternatives and calculate their stresses and strains. Alternately, you could apply a
known solution, such as using a flying buttress. Both work, but the former approach
has an analytical character while the latter has a known-good solution character.

Techniques exist on a spectrum from pure analyses, like calculating stresses, to
pure solutions, like using a flying buttress on a cathedral. Other software architec-
ture and design books have inventoried techniques on the solution-end of the spec-
trum, and call these techniques tactics (Bass, Clements and Kazman, 2003) or patterns
(Schmidt et al., 2000; Gamma et al., 1995), and include such solutions as using a pro-
cess monitor, a forwarder-receiver, or a model-view-controller.

1This is the same categorization technique used in ATAM to prioritize architecture drivers and quality at-
tribute scenarios, as discussed in Section 12.11.



3.4. TECHNIQUES 43

Software engineering Other engineering

Applying design or architecture pattern Stress calculations

Domain modeling Breaking point test

Throughput modeling Thermal analysis

Security analysis Reliability testing

Prototyping Prototyping

Figure 3.3: A few examples of engineering risk reduction techniques in software engineering and
other fields. Modeling is commonplace in all engineering fields.

The risk-driven model focuses on techniques that are on the analysis-end of the
spectrum, ones that are procedural and independent of the problem domain. These
techniques include using models such as layer diagrams, component assembly mod-
els, and deployment models; applying analytic techniques for performance, security,
and reliability; and leveraging architectural styles such as client-server and pipe-and-
filter to achieve an emergent quality.

Techniques mitigate risks. Design is a mysterious process, where virtuosos can make
leaps of reasoning between problems and solutions (Shaw and Garlan, 1996). For
your process to be repeatable, however, you need to make explicit what the virtuosos
are doing tacitly. In this case, you need to be able to explicitly state how to choose
techniques in response to risks. Today, this knowledge is mostly informal, but we can
aspire to creating a handbook that would help us make informed decisions. It would
be filled with entries that look like this:

If you have <a risk>, consider <a technique> to reduce it.

Such a handbook would improve the repeatability of designing software architectures
by encoding the knowledge of virtuoso architects as mappings between risks and
techniques.

Any particular technique is good at reducing some risks but not others. In a neat
and orderly world, there would be a single technique to address every known risk.
In practice, some risks can be mitigated by multiple techniques, while others risks
require you to invent techniques on the fly.

This frame of mind where you choose techniques based on risks helps you to
work efficiently. You do not want to waste time (or other resources) on low-impact
techniques, nor do you want to ignore project-threatening risks. You want to build
successful systems by taking a path that spends your time most effectively. That means
only applying techniques when they are motivated by risks.



44 CHAPTER 3. RISK-DRIVEN MODEL

Optimal basket of techniques. To avoid wasting your time and money, you should
choose techniques that best reduce your prioritized list of risks. You should seek
out opportunities to kill two birds with one stone by applying a single technique to
mitigate two or more risks. You might like to think of it as an optimization problem to
choose a set of techniques that optimally mitigates your risks.

It is harder to decide which techniques should be applied than it appears at first
glance. Every technique does something valuable, just not the valuable thing your
project needs. For example, there are techniques for improving the usability of your
user interfaces. Imagine you successfully used such techniques on your last project,
so you choose it again on your current project. You find three usability flaws in your
design, and fix them. Does this mean that employing the usability technique was a
good idea?

Not necessarily, because such reasoning ignores the opportunity cost. The fair
comparison is against the other techniques you could have used. If your biggest risk
is that your chosen framework is inappropriate, you should spend your time analyzing
or prototyping your framework choice instead of on usability. Your time is scarce, so
you should choose techniques that are maximally effective at reducing your failure
risks, not just somewhat effective.

Cannot eliminate engineering risk. Perhaps you are wondering why we should try
to create an optimal basket of techniques when we should go all the way and elim-
inate engineering risk. It is tempting, since engineers hate ignoring risks, especially
those they know how to address.

The downside of trying to eliminate engineering risk is time. As aviation pioneers,
the Wright brothers spent time on mathematical and empirical investigations into
aeronautical principles and thus reduced their engineering risk. But, if they had
continued these investigations until risks were eliminated, their first test flight might
have been in 1953 instead of 1903.

The reason you cannot afford to eliminate engineering risk is because you must
balance it with non-engineering risk, which is predominantly project management
risk. Consequently, a software developer does not have the option to apply every
useful technique because risk reductions must be balanced against time and cost.

3.5 Guidance on choosing techniques

So far, you have been introduced to the risk-driven model and have been advised to
choose techniques based on your risks. You should be wondering how to make good
choices. In the future, perhaps a developer choosing techniques will act much like a
mechanical engineer who chooses materials by referencing tables of properties and
making quantitative decisions. For now, such tables do not exist. You can, however,



3.5. GUIDANCE ON CHOOSING TECHNIQUES 45

ask experienced developers what they would do to mitigate risks. That is, you would
choose techniques based on their experience and your own.

However, if you are curious, you would be dissatisfied either with a table or a
collection of advice from software veterans. Surely there must be principles that
underlie any table or any veteran’s experience, principles that explain why technique
X works to mitigate risk Y.

Such principles do exist and we will now take a look at some important ones. Here
is a brief preview. First, sometimes you have a problem to find while other times you
have a problem to prove, and your technique choice should match that need. Second,
some problems can be solved with an analogic model while others require an analytic
model, so you will need to differentiate these kinds of models. Third, it may only
be efficient to analyze a problem using a particular type of model. And finally, some
techniques have affinities, like pounding is suitable for nails and twisting is suitable
for screws.

Problems to find and prove. In his book How to Solve It, George Polya identifies
two distinct kinds of math problems: problems to find and problems to prove (Polya,
2004). The problem, “Is there a number that when squared equals 4?” is a problem
to find, and you can test your proposed answer easily. On the other hand, “Is the set
of prime numbers infinite?” is a problem to prove. Finding things tends to be easier
than proving things because for proofs you need to demonstrate something is true in
all possible cases.

When searching for a technique to address a risk, you can often eliminate many
possible techniques because they answer the wrong kind of Polya question. Some
risks are specific so they can be tested with straightforward test cases. It is easy to
imagine writing a test case for “Can the database hold names up to 100 characters?”
since it is a problem to find. Similarly, you may need to design a scalable website.
This is also a problem to find because you only need to design (i.e., find) one solution,
not demonstrate that your design is optimal.

Conversely, it is hard to imagine a small set of test cases providing persuasive
evidence when you have a problem to prove. Consider, “Does the system always con-
form to the framework Application Programming Interface (API)?” Your tests could
succeed, but there could be a case you have not yet seen, perhaps when a framework
call unexpectedly passes a null reference. Another example of a problem to prove is
deadlock: Any number of tests can run successfully without revealing a problem in a
locking protocol.

Analytic and analogic models. Michael Jackson, crediting Russell Ackoff, distin-
guishes between analogic models and analytic models (Jackson, 1995; Jackson, 2000).
In an analogic model, each model element has an analogue in the domain of inter-
est. A radar screen is an analogic model of some terrain, where blips on the screen



46 CHAPTER 3. RISK-DRIVEN MODEL

correspond to airplanes — the blip and the airplane are analogues.
Analogic models support analysis only indirectly, and usually domain knowledge

and human reasoning are required. A radar screen can help you answer the question,
“Are these planes on a collision course?” but to do so you are using your special
purpose brainpower in the same way that an outfielder can tell if he is in position to
catch a fly ball (see Section 15.6).

An analytic (what Ackoff would call symbolic) model, by contrast, directly supports
computational analysis. Mathematical equations are examples of analytic models, as
are state machines. You could imagine an analytic model of the airplanes where each
is represented by a vector. Mathematics provides an analytic capability to relate the
vectors, so you could quantitatively answer questions about collision courses.

When you model software, you invariably use symbols, whether they are Unified
Modeling Language (UML) elements or some other notation. You must be careful
because some of those symbolic models support analytic reasoning while others sup-
port analogic reasoning, even when they use the same notation. For example, two
different UML models could represent airplanes as classes, one with and one without
an attribute for the airplane’s vector. The UML model with the vector enables you to
compute a collision course, so it is an analytic model. The UML model without the
vector does not, so it is an analogic model. So simply using a defined notation, like
UML, does not guarantee that your models will be analytic. Architecture description
languages (ADLs) are more constrained than UML with the intention of nudging your
architecture models to be analytic ones.

Whether a given model is analytic or analogic depends on the question you want
it to answer. Either of the UML models could be used to count airplanes, for example,
and so could be considered analytic models.

When you know what risks you want to mitigate, you can appropriately choose
an analytic or analogic model. For example, if you are concerned that your engineers
may not understand the relationships between domain entities, you may build an
analogic model in UML and confirm with domain experts that it is correct. Conversely,
if you need to calculate response time distributions, then you will want an analytic
model.

Viewtype matching. The effectiveness of some risk-technique pairings depends on
the type of model or view used. Viewtypes are not fully discussed until Section 9.6.
For now, it is sufficient to know about the three primary viewtypes. The module view-
type includes tangible artifacts such as source code and classes; the runtime viewtype
includes runtime structures like objects; and the allocation viewtype includes alloca-
tion elements like server rooms and hardware. It is easiest to reason about modifiabil-
ity from the module viewtype, performance from the runtime viewtype, and security
from the deployment and module viewtypes.

Each view reveals selected details of a system. Reasoning about a risk works best



3.6. WHEN TO STOP 47

when the view being used reveals details relevant to that risk. For example, reasoning
about a runtime protocol is easier with a runtime view, perhaps a state machine, than
with source code. Similarly, it is easier to reason about single points of failure using
an allocation view than a module view.

Despite this, developers are adaptable and will work with the resources they have,
and will mentally simulate the other viewtypes. For example, developers usually have
access to the source code, so they are quite adept at imagining the runtime behavior
of the code and where it will be deployed. While a developer can make do with source
code, reasoning will be easier when the risk and viewtype are matched, and the view
reveals details related to the risk.

Techniques with affinities. In the physical world, tools are designed for a purpose:
hammers are for pounding nails, screwdrivers are for turning screws, saws are for
cutting. You may sometimes hammer a screw, or use a screwdriver as a pry bar, but
the results are better when you use the tool that matches the job.

In software architecture, some techniques only go with particular risks because
they were designed that way and it is difficult to use them for another purpose. For
example, Rate Monotonic Analysis primarily helps with reliability risks, threat mod-
eling primarily helps with security risks, and queuing theory primarily helps with
performance risks (these techniques are discussed in Section 15.6).

3.6 When to stop

The beginning of this chapter posed two questions. So far, this chapter has explored
the first: Which design and architecture techniques should you use? The answer is
to identify risks and choose techniques to combat them. The techniques best suited
to one project will not be the ones best suited to another project. But the mindset of
aligning your architecture techniques, your experience, and the guidance you have
learned will steer you to appropriate techniques.

We now turn our attention to the second question: How much design and archi-
tecture should you do? Time spent designing or analyzing is time that could have
been spent building, testing, etc., so you want to get the balance right, not doing too
much design or ignoring risks that could swamp your project.

Effort should be commensurate with risk. The risk-driven model strives to effi-
ciently apply techniques to reduce risks, which means not over- or under-applying
techniques. To achieve efficiency, the risk-driven model uses this guiding principle:

Architecture efforts should be commensurate with the risk of failure.

If you recall the story of my father and the mailbox, he was not terribly worried about
the mailbox falling over, so he did not spend much time designing the solution or



48 CHAPTER 3. RISK-DRIVEN MODEL

applying mechanical engineering analyses. He thought about the design a little bit,
perhaps considering how deep the hole should be, but most of his time was spent on
implementation.

When you are unconcerned about security risks, spend no time on security design.
However, when performance is a project-threatening risk, work on it until you are
reasonably sure that performance will be OK.

Incomplete architecture designs. When you apply the risk-driven model, you only
design the areas where you perceive failure risks. Most of the time, applying a de-
sign technique means building a model of some kind, either on paper or a white-
board. Consequently, your architecture model will likely be detailed in some areas
and sketchy, or even non-existent, in others.

For example, if you have identified some performance risks and no security risks,
you would build models to address the performance risks, but those models would
have no security details in them. Still, not every detail about performance would be
modeled and decided. Remember that models are an intermediate product and you
can stop working on them once you have become convinced that your architecture is
suitable for addressing your risks.

Subjective evaluation. The risk-driven model says to prioritize your risks, apply cho-
sen techniques, then evaluate any remaining risk, which means that you must decide
if the risk has been sufficiently mitigated. But what does sufficiently mitigated mean?
You have prioritized your risks, but which risks make the cut and which do not?

The risk-driven model is a framework to facilitate your decision making, but it
cannot make judgment calls for you. It identifies salient ideas (prioritized risks and
corresponding techniques) and guides you to ask the right questions about your de-
sign work. By using the risk-driven model, you are ahead because you have identified
risks, enacted corresponding techniques, and kept your effort commensurate with
your risks. But eventually you must make a subjective evaluation: will the architec-
ture you designed enable you to overcome your failure risks?

3.7 Planned and evolutionary design

You should now be prepared, at a conceptual level at least, to go out and apply
software architecture on your projects. You may still have some questions about
how to proceed, however, since we have not yet discussed how the risk-driven model
interacts with other kinds of guidance you already know, things like planned and
evolutionary design, software processes, and specifically agile software development.
The remainder of the chapter shows how the risk-centric model is compatible with
each of these and can be used to augment their advice.



3.7. PLANNED AND EVOLUTIONARY DESIGN 49

We start by discussing three styles of design: planned, evolutionary, and minimal
planned design. Planned and evolutionary are the two basic styles of design and
minimal planned design is a combination of them.

Evolutionary design. Evolutionary design “means that the design of the system
grows as the system is implemented” (Fowler, 2004). Historically, evolutionary design
has been frowned upon because local and uncoordinated design decisions yield chaos,
creating a hodgepodge system that is hard to maintain and evolve any further.

However, recent trends in software processes have re-invigorated evolutionary
design by addressing most of its shortcomings. The agile practices of refactoring,
test-driven design, and continuous integration work against the chaos. Refactoring (a
behavior-preserving transformation of code) cleans up the uncoordinated local de-
signs (Fowler, 1999), test-driven design ensures that changes to the system do not
cause it to lose or break existing functionality, and continuous integration provides
the entire team with the same codebase. Some argue that these practices are suf-
ficiently powerful that planned design can be avoided entirely (Beck and Andres,
2004).

Of the three practices, refactoring is the workhorse that reduces the hodgepodge
in evolutionary design. Refactoring replaces designs that solved older, local problems
with designs that solve current, global problems. Refactoring, however, has limits.
Current refactoring techniques provide little guidance for architecture scale trans-
formations. For example, Amazon’s sweeping change from a tiered, single-database
architecture to a service-oriented architecture (Hoff, 2008a) is difficult to imagine
resulting from small refactoring steps at the level of individual classes and methods.
In addition, legacy code usually lacks sufficient test cases to confidently engage in
refactoring, yet most systems have some legacy code.

Though some projects use evolutionary design recklessly, its advocates say that
evolutionary design must be paired with supporting practices like refactoring, test-
driven design, and continuous integration.

Planned design. At the opposite end of the spectrum from evolutionary design is
planned design. The general idea behind planned design is that plans are worked
out in great detail before construction begins. Analogies with bridge design and
construction are often brought up, since bridge construction rarely begins before its
design is complete.

Few people advocate2 doing planned design for an entire software system, an
approach sometimes called Big Design Up Front (BDUF). However, complete planning
of just the architecture is suggested by some authors (Lattanze, 2008; Bass, Clements
and Kazman, 2003), since it is often hard to know on a large or complex project that

2Model Driven Engineering (MDE) is an exception since it needs a detailed model to generate code.



50 CHAPTER 3. RISK-DRIVEN MODEL

any system can satisfy the requirements. When you are not sure that any system can
be built, it is best to find this out early.

Planned architecture design is also practical when an architecture is shared by
many teams working in parallel, and therefore useful to know before the sub-teams
start working. In this case, a planned architecture that defines the top-level compo-
nents and connectors can be paired with local designs, where sub-teams design the
internal models of the components and connectors. The architecture usually insists
on some overall invariants and design decisions, such as setting up a concurrency
policy, a standard set of connectors, allocating high-level responsibilities, or defining
some localized quality attribute scenarios. Note that architectural modeling elements
like components and connectors will be fully described in the second part of this book.

Even when following planned design, an architecture or design should rarely, if
ever, be 100% complete before proceeding to prototyping or coding. With current
design techniques, it is nearly impossible to perfect the design without feedback from
running code.

Minimal planned design. In between evolutionary design and planned design is
minimal planned design, or Little Design Up Front (Martin, 2009). Advocates of mini-
mal planned design worry that they might design themselves into a corner if they did
all evolutionary design, but they also worry that all planned design is difficult and
likely to get things wrong. Martin Fowler puts estimated numbers on this, saying he
does roughly 20% planned design and 80% evolutionary design (Venners, 2002).

Balancing planned and evolutionary design is possible. One way is to do some
initial planned design to ensure that the architecture will handle the biggest risks.
After this initial planned design, future changes to requirements can often be handled
through local design, or with evolutionary design if the project also has refactoring,
test-driven-design, and continuous integration practices working smoothly.

If you are concerned primarily with how well the architecture will support global
or emergent qualities, you can do planned design to ensure these qualities and re-
serve any remaining design as evolutionary or local design. For example, if you have
identified throughput as your biggest risk, you could engage in planned design to set
up throughput budgets (e.g., message deliveries happen in 25ms 90% of the time).
The remainder of the design, which ensured that individual components and connec-
tors met those performance budgets, could be done as evolutionary or local design.
The general idea is to perform architecture-focused design (see Section 2.7) to set up
an architecture known to handle your biggest risks, allowing you more freedom in
other design decisions.

Which is best? Regardless of which design style you prefer, you must design software
before you write the code, whether it is ten minutes before or ten months before. Both
design styles have devoted proponents and their debate relies on anecdotes rather



3.8. SOFTWARE DEVELOPMENT PROCESS 51

than solid data, so for now opinions will vary. So if you have high confidence in your
ability to do evolutionary design, you will do less planned design.

Realize that different systems will lend themselves to different styles of design.
Consider the slow changes to the Apache web server over the past decade. It is
suitable for planned design because its design resembles an optimization problem
for a stable set of requirements (e.g., high reliability, extensibility, and performance).
On the other hand, many projects have rapidly changing requirements that favor
evolutionary design.

The essential tension between planned and evolutionary design is this: A long
head start on architectural design yields opportunities to ensure global properties,
avoid design dead ends, and coordinate sub-teams — but it comes at the expense of
possibly making mistakes that would be avoided if decisions were made later. Teams
with strong refactoring, test-driven development, and continuous integration prac-
tices will be able to do more evolutionary design than other teams.

The risk-driven model is compatible with evolutionary, planned, and minimal
planned design. All of these design styles agree that design should happen at some
point and they all allocate time for it. In planned design, that time is up-front, so
applying the risk-driven model means doing up-front design until architecture risks
have subsided. In evolutionary design, it means doing architecture design during de-
velopment, whenever a risk looms sufficiently large. Applying it to minimal planned
design is a combination of the others.

3.8 Software development process

Few developers build systems using only a design style, say evolutionary design, and
a compiler. Instead, their activities are structured using a software development pro-
cess that has been designed to increase their chances of successfully delivering a
good system. A good software development process does more than just minimize
engineering risks, since it must also factor in other business needs and risks, such as
time-to-market pressures.

When you broaden your attention from pure engineering risks to the overall
project risks, you find many more risks to worry about. Will the customer accept
your system? Will the market have changed by the time you deliver? Will you deliver
on time? Did your requirements reflect the customer’s desires? Do you have the right
people, are they doing the right jobs, and are they communicating effectively? Will
there be lawsuits?

Software development process. A software development process orchestrates a
team’s activities with the goal of balancing both engineering and project manage-
ment risks. It is tempting, but impossible, to cleanly separate engineering process
from project management process. A software development process helps you prior-



52 CHAPTER 3. RISK-DRIVEN MODEL

itize risks across both engineering and project management, and perhaps to decide
that even though engineering risks still exist, other risks outweigh them.

Risk as shared vocabulary. Risks are the shared vocabulary between engineers and
project managers. A manager’s job is to understand tradeoffs and make decisions
across the risks on a project. A manager may not be technical enough to understand
why a module does not work as desired, but he will understand the risk of its failure,
and the engineer can help him assess the risk’s probability and severity.

The concept of a risk is positioned in the common ground between the world
of engineering and the world of project management. Engineers may choose to ig-
nore office politics and marketing meetings, and managers may choose to ignore the
database schema and performance estimates, but in the idea of risks they find com-
mon ground to make decisions about the system.

Baked-in risks. If you had never seen a software development process before, you
might imagine it was like a control loop in a program, where during each iteration it
prioritizes the risks and plans out the next step accordingly, looping until the system
is delivered. In practice, some risk mitigation steps are deliberately baked-in to the
software development process.

At a large company worried about team coordination, the process might insist
on various forms of documentation at project milestones. Agile processes bake-in
worries about time-to-market and customer rejecting the product, and consequently
insist that the software be built and delivered in short iterations. IT-specific processes
often face risks associated with unknown and complex domains, so their processes
may bake in constructing domain models. Whenever I leave the house, I pat my
pockets to ensure that I have my wallet and keys because it is enough of a risk to
bake into my habits.

Baking risk mitigation techniques into the software development process can be
a blessing. It is a blessing when the process bakes-in risks that you would prioritize
anyway, so it saves you the time of every day deciding that, for example, you should
stick to two-week iterations rather than slipping the schedule. It is an efficient means
of conveying expertise from experienced software developers, because they can point
to successful results of following a process, rather than explaining their philosophy
on software development that was baked-in. In an agile method such as XP, a team
following the process can succeed even if they do not understand why XP chose its
particular set of techniques.

Baking risks into the software development process can be a curse when you get
it wrong. Many years ago, I interviewed with a tiny startup company. The project
manager, formerly with $BIGCOMPANY, asked me what I thought about process and
I told him that it needed to be appropriate for the project, the domain, and the team.
Above all else, I said, applying a process from a book, unaltered, was unlikely to



3.9. UNDERSTANDING PROCESS VARIATIONS 53

work. Like a scene from a comedy, he swiveled in his chair and picked up a book
describing $BIGCOMPANY’s development process and said, “This is the process we
will be following”. Needless to say, I did not end up working there, but I wish I could
have seen the five co-located engineers producing detailed design documents and
other bureaucracy that are baked-in to processes for large, distributed teams.

If you decide to tailor your software development process to bake in risks, some
important features to consider include project complexity (big, small), team size (big,
small), location (distributed, co-located), domain (IT, finance, systems, embedded,
safety-critical, etc.), and kind of customer (internal, external, shrink-wrapped).

3.9 Understanding process variations

The descriptions offered here are coarse overviews that omit important details of each
process, but are adequate background so that you can later see how the risk-driven
model could be applied to any of them.

These simplified descriptions force-fit each process into a simple two-part model:
An optional up-front design part with one or more iterations that follow. Not ev-
ery development process here has up-front design, but all of them have at least one
iteration. The development processes vary on four points:

1. Is there up-front design?

2. What is the nature of the design (planned/evolutionary; redesign allowed)?

3. How is work prioritized across iterations?

4. And how long is an iteration?

Figure 3.4 summarizes the processes and highlights some of their differences.
Two other important variation points that arise when talking about development

process are: how detailed should your design models be, and how long you should
hold on to your design models? None of the above processes commits to an answer
for these, except for XP, which allows modeling but discourages keeping the models
around past an iteration. Using this simple model of software development processes
yields the following descriptions:

Waterfall. The waterfall process proceeds from beginning to end as a single long
block of work that delivers the entire project (Royce, 1970). It assumes planned de-
sign work that is done in its analysis and design phases. These precede the construc-
tion phase, which can be considered a single iteration. With just one iteration, work
cannot be prioritized across iterations, but it may be built incrementally within the
construction phase. Applying the risk-driven model would mean doing architecture
work primarily during the analysis and design phases.



54 CHAPTER 3. RISK-DRIVEN MODEL

Process Up-front
design

Nature of design Prioritization
of work

Iteration
length

Waterfall In analysis &
design
phases

Planned design; no
redesign

Open Open

Iterative Optional Planned or
evolutionary;
redesign allowed

Open, often
feature-centric

Open,
usually 1-8
weeks

Spiral None Planned or
evolutionary

Riskiest work
first

Open

UP / RUP Optional;
design
activities
front-loaded

Planned or
evolutionary

Riskiest work
first, then
highest value

Usually 2-6
weeks

XP None, but
some do in
iteration zero

Evolutionary design Highest
customer value
first

Usually 2-6
weeks

Figure 3.4: Examples of software development processes and how they treat design issues. For
comparison purposes, a waterfall process is treated as having a single long iteration.

Iterative. An iterative development process builds the system in multiple work
blocks, called iterations (Larman and Basili, 2003). With each iteration, developers
are allowed to rework existing parts of the system, so it is not just built incrementally.
Iterative development optionally has up-front design work but it does not impose a
prioritization across the iterations, nor does it give guidance on the nature of design
work. Applying the risk-driven model would mean doing architecture work within
each iteration and during the optional up-front design.

Spiral. The spiral process is a kind of iterative development, so it has many iter-
ations, yet it is often described as having no up-front design work (Boehm, 1988).
Iterations are prioritized by risk, with the first iteration handling the riskiest parts of
a project. The spiral model handles both management and engineering risks. For
example, it may address “personnel shortfalls” as a risk. The spiral process gives no
guidance on how much architecture/design work to do, or of which architecture and
design techniques to use.



3.10. THE RISK-DRIVEN MODEL AND SOFTWARE PROCESSES 55

����������� ����������	 ����������
 ����������� Ó�

����������������������������

Figure 3.5: An example of how the amount of design could vary across iterations based on your
perception of the risks. Based on the amount of time spent, you can infer that the most risk was
perceived in iteration 0 and iteration 2.

[Rational] Unified Process (RUP). The Unified Process and its specialization, the
Rational Unified Process, are iterative, spiral processes (Jacobson, Booch and Rum-
baugh, 1999; Kruchten, 2003). They both highlight the importance of addressing
risks early and highlight the use of architecture to address risks. The (R)UP advo-
cates working on architecturally-relevant requirements first, in early iterations. It can
accommodate either planned or evolutionary design.

Extreme Programming (XP). Extreme Programming is a specialization of an itera-
tive and agile software development process, so it contains multiple iterations (Beck
and Andres, 2004). It suggests avoiding up-front design work, though some projects
add an iteration zero (Schuh, 2004), in which no customer-visible functionality is de-
livered. It guides developers to apply evolutionary design exclusively, though some
projects modify it to incorporate a small amount of up-front design. Each iteration is
prioritized by the customer’s valuation of features, not risks.

3.10 The risk-driven model and software processes

It is possible to apply the risk-driven model to any of these software development
processes while still keeping within the spirit of each. The waterfall process prescribes
planned design in its analysis and design phases, but does not tell you what kind of
architecture and design work to do, or how much of it. You can apply the risk-driven
model during the analysis and design phases to answer those questions.

The iterative process does not have a designated place for design work, but it
could be done at the beginning of each iteration. The amount of time spent on design
would vary based on the risks. Figure 3.5 provides a notional example of how the
amount of design could vary across iterations based on your perception of the risks.

The spiral process and the risk-driven model are cousins in that risk is primary
in both. The difference is that the spiral process, being a full software development
process, prioritizes both management and engineering risks and guides what happens
across iterations. The risk-driven model only guides design work to mitigate engineer-
ing risks, meaning that it would help you understand which architecture techniques
you should use within a specific iteration of the spiral process. Applying the risk-



56 CHAPTER 3. RISK-DRIVEN MODEL

driven model to the spiral model or the (R)UP works the same as with an iterative
process.

You will have noticed that, of the processes listed in Figure 3.4, XP (an agile
process) has the most specific advice. Consequently, it is trickiest to apply the risk-
driven model into the XP process (or other feature-centric agile processes). What
follows is a sketch of how the risk-driven model could be applied in an agile project.

3.11 Application to an agile processes

The following description of using the risk-driven model on an agile project highlights
some core issues, such as when to design and how to mix risks into a feature-driven
development process. Since agile projects vary in their process, this description as-
sumes one with a two-week iteration that plays a planning game to manage a fea-
ture backlog. On the engineering side, there are software architecture risks that you
should fold into this process, which includes identification, prioritization, mitigation,
and evaluation of those risks. The big challenges are: first, how to address initial
engineering risks, and second, how to incorporate engineering risks that you later
discover into the stack of work to do.

Risks. You will have identified some risks at the beginning of the project, such as
the initial choices for architectural style, choice of frameworks, and choice of other
COTS (Commercial Off-The-Shelf) components. Some agile projects use an iteration
zero to get their development environment set up, including source code control
and automated build tools. You can piggyback here to start mitigating the identified
risks. Developers could have a simple whiteboard meeting to ensure everyone agrees
on an architectural style, or come up with a short list of styles to investigate. If
performance characteristics of COTS components are unknown but important, some
quick prototyping can be done to provide approximate speed or throughput numbers.

Risk backlog. At the end of an iteration, you need to evaluate how well your activities
mitigated your risks. Most of the time you will have reduced a risk sufficiently that it
drops off your radar, but sometimes not. Imagine that at the end of the iteration you
have learned that prototyping shows that your preferred database will run too slowly.
This is the beginning of a risk backlog. This risk can be written up as a testable feature
for the system and added to the backlog.

Note that this is not an excuse to turn a nominal iteration zero into a de facto Big
Design Up-Front exercise. Instead of extending the time of iteration zero, risks are
pushed onto the backlog.

Prioritizing risks and features. It is challenging to fold engineering risk into a plan-
ning game to manage a backlog of features. Many agile projects divide the world



3.12. RISK AND ARCHITECTURE REFACTORING 57

��������

��	
�
�
����


�����

�������

�������


�
�� ����
�

��
	����

�����

����

�
���
�

Figure 3.6: One way to incorporate risk into an agile process is to convert the feature backlog into
a feature & risk backlog. The product owner adds features and the software team adds technical
risks. The software team must help the product owner to understand the technical risks and suitably
prioritize the backlog.

into product owners, who create a prioritized list of features called the backlog, and
developers, who take features from the top of the backlog and build them. The world
becomes more complex once you introduce risks, because both features and risks
must be prioritized. Some risks are small enough that they can be handled as they
arise during an iteration, but larger risks will need to be scheduled just like features
are. Whenever possible, risks should be written up as testable items. The question is,
who prioritizes the risks?

If you give the product owner the additional responsibility to prioritize architec-
tural risks alongside features, you can simply change the feature backlog into a fea-
ture & risk backlog, as seen in Figure 3.6. Software developers may see a feature low
in the backlog asking for security. It is their job to educate the product owners that
if they ever want to have a secure application, they need to address that risk early,
since it will be difficult or impossible to add later. As part of the reflection at the
end of each iteration, you should evaluate architectural risks and feed these into the
backlog.

Summary. An agile process can handle architectural risks by doing three things. Ar-
chitectural risks that you know in advance can be (at least partially) handled in a
time-boxed iteration zero, where no features are planned to be delivered. Small ar-
chitectural risks can be handled as they arise during iterations. Large architectural
risks should be promoted to be on par with features and inserted into a combined
feature & risk backlog.

3.12 Risk and architecture refactoring

Over time, system developers understand increasingly well how a system should be
designed. This is true regardless of which kind of process they follow (e.g., waterfall
or iterative processes). In the beginning, they know and understand less. After some



58 CHAPTER 3. RISK-DRIVEN MODEL

work (design, prototyping, iterations, etc.) they have better grounded opinions on
suitable designs.

Once they recognize that their code does not represent the best design (e.g., by
detecting code smells), they have two choices. One is to ignore the divergence, which
yields technical debt. If allowed to accumulate, the system will become a big ball of
mud (see Section 14.7). The other is to refactor the code, which keeps it maintain-
able. This second option is well described by Brian Foote and William Opdyke in their
patterns on software lifecycle (Coplien and Schmidt, 1995).

Refactoring, by definition, means re-design and the scale of that redesign can
vary. Sometimes a refactoring involves just a handful of objects or some localized
code. But other times it involves more sweeping architectural changes and is called
architecture refactoring. Since little published guidance exists for refactoring at large
scale, architecture refactoring is generally performed ad hoc.

The example from the introduction where Rackspace implemented their query
system three different ways (see Section 1.2) is best thought of as architecture refac-
toring. There, each refactoring of the architecture was precipitated by a pressing
failure risk. Object-level refactorings take a negligible amount of time and therefore
need little justification, so you should just go ahead and, for example, rename a vari-
able to be more expressive of its intent. An architecture refactoring is expensive, so it
requires a significant risk to justify it.

Two important lessons are apparent. First, design does not exclusively happen up-
front. It is often reasonable to spend time up-front making the best choices you can,
but it is optimistic to think you know enough to get all those design decisions right.
You should anticipate spending time designing after your project’s inception.

Second, failure risk can guide architecture refactoring. By the time it is imple-
mented, nearly every system is out of date compared to the best thinking of its devel-
opers. That is, some technical debt exists. Perhaps, in hindsight, you wish you had
chosen a different architecture. Risks can help you decide how bad it will be if you
keep your current architecture.

3.13 Alternatives to the risk-driven model

The risk-driven model does two things: it helps you decide when you can stop doing
architecture, and it guides you to appropriate architecture activities. It is not good at
predicting how long you will spend designing, but it helps you recognize when you
have done enough. There are several alternatives to the risk-driven model, with their
own advantages and disadvantages.

No design. The option of not designing is a bit of a misnomer, especially if you believe
that every system has an architecture, because the developers must have thought
about it at some point. Perhaps they were thinking about the design (i.e., what they



3.13. ALTERNATIVES TO THE RISK-DRIVEN MODEL 59

will code) immediately before they start typing, but they do think about the design.
Such projects likely borrow heavily from presumptive architectures (see Section 2.4),
where the developers pattern their system off of similar successful systems, explicitly
or implicitly.

Documentation package. Some people suggest, or at least imply, that you should
build a full documentation package that describes your architecture. If you follow this
guidance, you will build a set of models and diagrams and write them down in such
a way that someone else could read and understand the architecture, which can be
quite desirable. If you need documentation, the Documenting Software Architectures
book (Clements et al., 2010) will guide you to an effective set of models and diagrams
to record.

However, not every project should spend the effort to create a full documentation
package. For example, the “3 guys in a garage” startup probably cannot afford to
write anything down.

Yardsticks. Empirical data can help you decide how much time should be spent on
architecture and design. Barry Boehm has calculated the optimal amount of time to
spend on the architecture for small, medium, and large projects based on a variant
of his COCOMO model (Boehm and Turner, 2003). For various project sizes, he has
plotted curves of architecture effort vs. total project duration. His data indicates that
most projects should spend 33-37% of their total time doing architecture, with small
projects spending as little as 5% and very large projects spending 40%. A yardstick
like “spend 33% of your time on architecture” can be used by project managers for
planning project activities and staffing requirements, yielding a time budget to spend
in design.

Yardsticks, however, are little help to developers once the architecture work has
started. No reasonable developer should continue design activities for additional
days after the risks have been worked out, even if the yardstick provides that budget.
Nor should a reasonable developer switch to coding when a major failure risk is
outstanding. It is best to view such yardsticks as heuristics derived from experience
combating risks, where projects of a certain size historically needed about that much
time to mitigate their risks. That yardstick does not help you decide whether one
more (or one less) day of architecture work is appropriate. Also, yardsticks only
suggest broad categorical activities rather than guide you to particular techniques.

Ad hoc. When they choose when and how much architecture to do, most developers
probably do not follow any of the alternatives above. Instead, they make a decision in
the moment, based on their experience and their best understanding of the project’s
needs. This may indeed be the most effective way to proceed, but it is dependent
upon the skill and experience of the developer. It is not teachable, since its lessons



60 CHAPTER 3. RISK-DRIVEN MODEL

are not explicit, nor is it particularly helpful in creating project planning estimates. It
may be that, in practice, the ad hoc approach is a kind of informal risk-driven model,
where developers tacitly weigh the risks and choose appropriate techniques.

3.14 Conclusion

This chapter set out to investigate two questions. First, which design and architec-
ture techniques should developers use? And second, how much design and architecture
should developers do? It reviewed existing answers, including doing no design, using
yardsticks, building documentation packages, and proceeding ad hoc. It introduced
the risk-driven model that encourages developers to: (1) prioritize the risks they face,
(2) choose appropriate architecture techniques to mitigate those risks, and (3) re-
evaluate remaining risks. It encourages just enough design and architecture by guiding
developers to a prioritized subset of architecture activities. Design can happen up-
front but it also happens during a project.

The risk-driven model is inspired by my father’s work on his mailbox. He did
not perform complex calculations — he just stuck the post in the hole then filled it
with concrete. Low-risk projects can succeed without any planned architecture work,
while many high-risk ones would fail without it.

The risk-driven model walks a middle path that avoids the extremes of complete
architecture documentation packages and architecture avoidance. It follows the prin-
ciple that your architecture efforts should be commensurate with the risk of failure.
Avoiding failure is central to all engineering and you can use architecture techniques
to mitigate the risks. The key element of the risk-driven model is the promotion of
risk to prominence. Each project will have a different set of risks, so it likely needs a
different set of techniques. To avoid wasting your time and money, you should choose
techniques that best reduce your prioritized list of risks.

The question of how much software architecture work you should do has been a
thorny one for a long time. The risk-driven model transforms that broad question into
a narrow one: “Have your chosen techniques sufficiently reduced your failure risks?”
Evaluation of risk mitigation is still subjective, but it is one that developers can have
a focused conversation about.

Engineering techniques address engineering risks, but projects face a wide vari-
ety of risks. Software development processes must prioritize both management risks
and engineering risks. You cannot reduce engineering risks to zero because there
are also project management risks to consider, including time-to-market pressure. By
applying the risk-driven model, you ensure that whatever time you devote to soft-
ware architecture reduces your highest priority engineering risks and applies relevant
techniques.



3.15. FURTHER READING 61

Agile architecture approaches often emphasize evolutionary design over planned
design. Another middle path, minimal planned design, can be used to avoid the ex-
tremes. The essential tension is this: A long headstart on architectural design yields
opportunities to ensure global properties, avoid design dead ends, and coordinate
sub-teams — but it comes at the expense of possibly making mistakes that would
be avoided if decisions were made later. Agile processes focusing on features can be
adapted slightly to add risk to the feature backlog, with developers educating product
owners on how to prioritize the feature & risk backlog.

Some readers may be frustrated that this chapter does not prescribe a list of tech-
niques to use and a single process to follow. These are missing because the techniques
that work great on one project would be inappropriate on another. And there is not
yet enough data to overcome opinions about the best process to recommend. Indeed,
you may not have a choice about which process you follow, but within that process
you likely have the ability to use the risk-driven model. This chapter has tried to
provide relevant information about how to make your own choices so that you can
do just enough architecture for your projects.

3.15 Further reading

The invention of risk as a concept likely occurred quite early, with references to it
in Greek antiquity, but it took on its modern, more general, idea as late as the 17th
century, where it increasingly displaced the concept of fortunes as what drove life’s
outcomes (Luhmann, 1996). A few minutes after that, project managers started using
risk to drive their projects. This longstanding tradition in project management has
carried over into software process design, with many authors emphasizing the role
of risk in software development, including Philippe Kruchten (Kruchten, 2003), Ivar
Jacobson, Grady Booch, and James Rumbaugh (Jacobson, Booch and Rumbaugh,
1999), including the connection between architecture and risk.

Barry Boehm wrote about risk in the context of software development with his pa-
per on the spiral model of software development (Boehm, 1988), which is an interest-
ing read even if you already understand the model. The risk-driven model would on
first glance appear to be quite similar to the spiral model of software development,
but the spiral model applies to the entire development process, not just the design
activity. A single turn through the spiral has a team analyzing, designing, developing,
and testing software. The full spiral covers the project from inception to deployment.
The risk-driven model, however, applies just to design, and can be incorporated into
nearly any software development process. Furthermore, the spiral model guides a
team to build the riskiest parts first, but does not guide them to specific design activi-
ties. Both the spiral model and the risk-driven model are in strong agreement in their
promotion of risk to a position of prominence.



62 CHAPTER 3. RISK-DRIVEN MODEL

Barry Boehm and Richard Turner followed this up with a book on risk and ag-
ile processes (Boehm and Turner, 2003). The summary of their judgment is, “The
essence of using risk to balance agility and discipline is to apply one simple question
to nearly every facet of process within a project: Is it riskier for me to apply (more of)
this process component or to refrain from applying it?”

Mark Denne and Jane Cleland-Huang discuss both architecture and risk in the
context of software project management (Denne and Cleland-Huang, 2003). They
advocate managing projects by chunking development into Minimum Marketable Fea-
tures, which has the consequence of incrementally constructing your architecture.

The risk-driven model is similar to global analysis as described by Christine
Hofmeister, Robert Nord, and Dilip Soni (Hofmeister, Nord and Soni, 2000). Global
analysis consists of two steps: (1) analyzing organizational, technical, and product
factors; and (2) developing strategies. Factors and strategies in global analysis map
to risks and activities in the risk-driven model. Factors are broader than the technical
risks in the risk-driven model, and could include, for example, headcount concerns.
Both global analysis and the risk-driven model are similar in that they externalize a
structured thought process of the form: I am doing X because Y might cause prob-
lems. In the published descriptions, the intention of global analysis is not to optimize
the amount of effort spent on architecture, but rather to ensure that all factors have
been investigated.

Two publications from the SEI can help you become more consistent and thor-
ough in your identification and explanation of risks. Carr et al. (1993) describe
a taxonomy-based method for identifying risks and Gluch (1994) introduces the
condition-transition-consequence format for describing risks.

The risk-driven model advocates building limited architecture models that have
detail only where you perceive risks. Similarly, authors have been advocating build-
ing minimally sufficient models for years, including Desmond D’Souza, Alan Wills,
and Scott Ambler (D’Souza and Wills, 1998; Ambler, 2002). Tailoring the models
built on a project to the nature of the project (greenfield, brownfield, coordination,
enhancement) is discussed in Fairbanks, Bierhoff and D’Souza (2006).

The idea of cataloging techniques, or tactics, is described in the context of At-
tribute Driven Design in Bass, Clements and Kazman (2003). Attribute Driven Design
(ADD) relies on a mapping from quality attributes to tactics (discussed in Section
11.3) , much like the risk-driven model and global analysis. The concept in this book
of mapping development techniques is similar in nature. ADD guides developers to
an appropriate design (a pattern), while the risk-driven model guides developers to
an activity, such as performance modeling or domain analysis. The risk-driven model
can be seen as taking the promotion of risk from the spiral model and adapting the
tabular mapping of ADD to map risks to techniques.

Knowing what tactics or techniques to apply would be valuable knowledge to



3.15. FURTHER READING 63

include in a software architecture handbook, and would accelerate the learning of
novice developers. Such knowledge is already in the heads of virtuosos, as described
by Mary Shaw and David Garlan (Shaw and Garlan, 1996). The better our field en-
codes this knowledge, the more compact it becomes and the faster the next generation
of developers absorbs it and sees farther.

Though tactics and techniques were described in this chapter as tables, they could
be expressed as a pattern language, as originally described by Christopher Alexander
for the domain of buildings (Alexander, 1979; Alexander, 1977), and later adapted
to software in the Design Patterns book (Gamma et al., 1995) by Erich Gamma and
others.

Martin Fowler’s essay, “Is Design Dead?” (Fowler, 2004) provides a very readable
introduction to evolutionary design and the agile practices that are required to make
it work.

Merging risk-based software development and agile processes is an open research
area. Jaana Nyfjord’s thesis (Nyfjord, 2008) proposes the creation of a Risk Manage-
ment Forum to prioritize risk across products and projects in an organization. Since
the goal here is to handle architecture risks that are only a subset of all project risks,
a smaller change to the process may work.

This book uses risk to help you decide which techniques to use and how many of
them to apply, assuming the requirements are not negotiable. Another way to use
it is to help determine the scope of the projects, assuming the requirements can be
changed. The quantitative technique is described in Feather and Hicks (2006), with
the result being a bag of requirements that gives you the most benefit for the risk that
you take on.

With many developers seeking lighter weight processes, agile development is pop-
ular. Ambler (2009) provides an overview of how architecture can be woven into
agile processes, and Fowler (2004) discusses how evolutionary design can comple-
ment planned design. Boehm and Turner (2003) discuss the tension between moving
fast and getting it right. A thorough treatment of a practical process for software
architecture is found in (Eeles and Cripps, 2009).


