
Chapter 7

Conceptual Model of Software
Architecture

In this book’s introduction, you read a story about a coach and a rookie watching
the same game. They both saw the same things happening on the field, but despite
the rookie’s eyes being younger and sharper, the coach was better at understanding
and evaluating the action. As a software developer, you would like to understand
and evaluate software as effectively as the coach understands the game. This and
subsequent chapters will help you build up a mental representation of how software
architecture works so that when you see software you will understand it better and
will design it better.

The idea of using models, however, is often wrongly conflated with the choice of
software process (i.e., waterfall) and has been associated with analysis paralysis. This
book is not advocating building lots of written models (i.e., documentation) up front,
so it is best to knock down a few strawmen arguments or misunderstandings:

• Every project should document its architecture: False. You should make
plans before going on a road trip, but do you plan your commute to work in the
morning? Models help you solve problems and mitigate risks, but while some
problems are best solved with models, others can be solved directly.

• Architecture documents should be comprehensive: False. You may decide
to build a broad architecture document, or even a comprehensive one, but only
in some circumstances — perhaps to communicate a design with others. Most



112 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

often you can model just the parts that relate to your risks, so a project with
scalability risks would build a narrow model focusing on scalability.

• Design should always precede coding: False. In one sense this is true, because
code does not flow from your fingers until you have thought about what you will
build. But it is false to believe that a design phase (in the software process sense)
must precede coding. In fact, early coding may help you discover the hardest
problems.

So you should set these strawmen ideas aside. The real reason to use software ar-
chitecture models is because they help you perform like the coach, not the rookie. If
you are not already at the coach level, you want to get there as soon as possible. The
standard architecture models represent a condensed body of knowledge that enables
you to efficiently learn about software architecture and design. Afterwards, you will
find that having a standard model frees your mind to focus on the problem at hand
rather than on inventing an new kind of model for each problem.

Conceptual models accelerate learning. If you want to become as effective as a
coach, you could simply work on software and wait until you are old. Eventually,
all software developers learn something about architecture, even if they sneak up on
that knowledge indirectly. It just takes practice, practice, practice at building systems.
There are several problems with that approach, however. First, not all old software
developers are the most effective ones. Second, the approach takes decades. And
third, your understanding of architecture will be idiosyncratic, so you will have a
hard time communicating with others, and vice versa.

Consider another path, one where you see farther by standing on the shoulders of
others. Perhaps we are still waiting for the Isaac Newton of software engineering, but
there is plenty to learn from those who have built software before us. Not only have
they given us tangible things like compilers and databases, they have given us a set of
abstractions for thinking about programs. Some of these abstractions have been built
into our programming languages — functions, classes, modules, etc. Others likely
will be, such as components, ports, and connectors1.

Some people are born brilliant, but for those of us who are not, how effective
is standing on the shoulders of those who came before us? Consider this: you are
probably a better mathematician than all but a handful of the people in the 17th
century. Then, as now, math virtuosos had talent and practiced hard, but today you
have the benefit of centuries of compacted understanding. By the time you leave high
school, you solve math problems that required a virtuoso a few hundred years ago.
And before that, the virtuosos of the 17th century had the benefit of someone else
inventing the positional number system and the concept of zero. As you consider

1Research languages like ArchJava have already added these concepts to Java.



113

the two paths, remember that you can and should do both: learn the condensed
understanding of architecture and then practice, practice, practice.

Conceptual models free the mind. A condensed understanding can take the form
of a conceptual model. The coach’s conceptual model includes things like offense and
defense strategies, positions, and plays. When he watches the movement of players
on the field, he is categorizing what he sees according to his conceptual model. He
sees the motion of a player as more than that — it is an element of a play, which is
part of a strategy. The rookie, with his limited conceptual model, sees less of this.

Conceptual models accelerate progress in many fields. If you ever took physics,
you may have forgotten most of the equations you learned, but you will still conceive
of forces acting on bodies. Your physics teacher’s lessons were designed to instill that
conceptual model. Similarly, if you have ever studied design patterns, you cannot
help but recognize those patterns in programs you encounter.

A conceptual model can save you time through faster recognition and consistency,
and amplify your reasoning. Alfred Whitehead, said “By relieving the brain of all un-
necessary work, a good notation sets it free to concentrate on more advanced prob-
lems, and in effect increases the mental power of the race.” (Whitehead, 1911) This
applies equally to conceptual models. As mentioned in the introduction, Alan Kay has
observed that a “point of view is worth 80 IQ points”, continuing to say that the pri-
mary reason we are better engineers than in Roman times is because we have better
problem representations (Kay, 1989).

There is a general consensus on the essential elements and techniques for architec-
ture modeling, though different authors emphasize different parts. For example, the
Software Engineering Institute (SEI) emphasizes techniques for quality attribute mod-
eling (Bass, Clements and Kazman, 2003; Clements et al., 2010). The Unified Model-
ing Language (UML) camp emphasizes techniques for functional modeling (D’Souza
and Wills, 1998; Cheesman and Daniels, 2000). The conceptual model in this book
integrates both quality attribute and functional models.

Chapter goals and organization. The goal of this part of the book is to provide you
with a conceptual model of software architecture, one that enables you to quickly
make sense of the software you see and reason about the software you design. The
conceptual model includes a set of abstractions, standard ways of organizing models,
and know-how. You will never become good at anything without talent and practice,
but you can accelerate your progress by building up a mental conceptual model.

This chapter shows you how to partition your architecture into three primary mod-
els: the domain, design, and code. It relates these models using designation and re-
finement relationships. Within each model, details are shown using views. The three
chapters that follow this one examine the domain, design, and code models in more
detail. An example system for a website called Yinzer runs throughout. A Yinzer is a



114 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

slang term for someone from Pittsburgh, home of Carnegie Mellon University, and is
derived from yinz, which is Pittsburgh dialect equivalent to y’all.

Yinzer offers its members online business social networking and job adver-
tisement services in the Pittsburgh area. Members can add other members
as business contacts, post advertisements for jobs, recommend a contact
for a job, and receive email notifications about matching jobs.

Subsequent chapters cover other details on modeling and give advice about how to
use models effectively.

7.1 Canonical model structure

Once you start building models, there are lots of bits and pieces to keep track of. If
you see a UML class diagram for the Yinzer system that shows a Job Advertisement
associated with a Company, you want to know what it represents: is it things from
the real world, your design, or perhaps even your database schema? You need an
organization that helps you sort those bits into the right places and to make sense of
the whole thing.

The canonical model structure presented here provides you with a standard way to
organize and relate the facts you encounter and the models you build. You will not al-
ways build models that cover the whole canonical model structure, but most projects
over time will have bits and pieces of models that follow the canonical structure.

Overview

The essence of the canonical model structure is simple: Its models range from abstract
to concrete, and it uses views to drill down into the details of each model.

There are three primary models: the domain model, the design model, and the
code model, as seen in Figure 7.1. The canonical model structure has the most ab-
stract model (the domain) at the top and the most concrete (the code) at the bottom.
The designation and refinement relationships ensure that the models correspond, yet
enable them to differ in their level of abstraction.

Each of the three primary models (the domain, design, and code models) are like
databases in that they are comprehensive, but are usually too large and detailed to
work on directly. (More on this shortly, in Section 7.4). Views allow you to select
just a subset of the details from a model. For example, you can select just the details
about a single component or just the dependencies between modules. You have no
doubt worked with views before, such as a data dictionary or a system context dia-
gram. Views allow you to relate these lists and diagrams back to the canonical model
structure. Organizing the models in the canonical structure aids categorization and
simplification.



7.2. DOMAIN, DESIGN, AND CODE MODELS 115

The canonical model structure categorizes different kinds of facts into different
models. Facts about the domain, design, and code go into their own models. When
you encounter a domain fact like “billing cycles are 30 days”, a design fact like “font
resources must always be explicitly de-allocated”, or an implementation fact like “the
customer address is stored in a varchar(80) field”, it is easy to sort these details into
an existing mental model.

The canonical model structure shrinks the size of each problem. When you want
to reason about a domain problem you are undistracted by code details, and vice
versa, which makes each easier to reason about.

Let’s first take a look at the domain, design, and code models before turning our
attention to the relationships between them.

7.2 Domain, design, and code models

The domain model describes enduring truths about the domain; the design model de-
scribes the system you will build; and the code model describes the system source
code. If something is “just true” then it probably goes in the domain model; if some-
thing is a design decision or a mechanism you design then it probably goes in the
design model; and if something is written in a programming language, or is a model
at that same level of abstraction, then it goes in the code model. Figure 7.1 shows the
three models graphically and summarizes the contents of each.

Domain model. The domain model expresses enduring truths about the world that
are relevant to your system. For the Yinzer system, some relevant truths would
include definitions of important concepts like Ads and Contacts, relationships be-
tween those concepts, and behaviors that describe how the concepts and relationships
change over time. In general, the domain is not under your control, so you cannot
decide that weeks have six days or that you have a birthday party every week.

Design model. In contrast, the design is largely under your control. The system to be
built does not appear in the domain model, but it makes its appearance in the design
model. The design model is a partial set of design commitments. That is, you leave
undecided some (usually low-level) details about how the design will work, deferring
them until the code model.

The design model is composed of recursively nested boundary models and internals
models. A boundary model and an internals model describe the same thing (like a
component or a module), but the boundary model only mentions the publicly visible
interface, while the internals model also describes the internal design.

Code model. The code model is either the source code implementation of the sys-
tem or a model that is equivalent. It could be the actual Java code or the result of



116 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

à�����

�����

������������	

�
���������	

	���


�����

à�����
�����

�������

�����

���������

�����

�
���������	

���
�����
�����������������

��������
���
�����
��

���������

���������������������������

���������������������������

������������������������������

�������������������������
������

 �
������������������������������

!���
��"�������������������
����������
�����������

#��������������������
����

�������������"���������
�������

$�������������������������
������������
�������

%����

!�����������

%������
�����������&����������'��������

Figure 7.1: The canonical model structure that organizes the domain, design, and code models.
The design model contains a top-level boundary model and recursively nested internals models.

running a code-to-UML tool, but its important feature is that has a full set of design
commitments.

Design models often omit descriptions of low-risk parts knowing that the design
is sufficient so long as the developer understands the overall design and architecture.
But where the design model has an incomplete set of design commitments, the code
model has a complete set, or at least a sufficiently complete set to execute on a
machine.

7.3 Designation and refinement relationships

You no doubt have an intuitive sense of how the domain relates to the design and
how the design relates to the code. Because this chapter seeks to divide up models
and relate them, it is a good idea to examine these relationships carefully so that you
can fully understand them.

Designation. The designation relationship enables you to say that similar things in
different models should correspond. Using the Yinzer example, the domain model
describes domain truths, such as people building a network of contacts and compa-
nies posting ads. Using the designation relationship, these truths carry over into the
design, as seen in Figure 7.2.



7.3. DESIGNATION AND REFINEMENT RELATIONSHIPS 117

à����

��������	
��

���������	
�


��
��

������
�����

���	��������

������������������������

������


����	�
�����

����	���������������	���������	���

�����	��������	���	�������	����

���������������������

Figure 7.2: The designation relationship ensures that concepts you choose from the domain cor-
respond to types or data structures in your design.

You have leeway in your design but it should not violate domain truths. You can
designate that selected concepts from the domain must correspond to types and data
structures from the design. Things that you do not designate are unconstrained.

While in practice the designation relationship is rarely written down precisely, it
would be a mapping that defined the correspondence between the domain elements
(e.g., Advertisement and Job concepts) and the design elements (e.g., Advertisement
and Job types and data structures).

Perhaps surprisingly, the design is rarely 100% consistent with the domain because
systems often use a simplified or constrained version the domain concepts. For ex-
ample, the system may not realize that the same person reads email at two different
email addresses, and so might consider them two different people. Or the system
may restrict domain concepts, such as limiting the number of contacts a person can
have in the system. But when correspondence with the domain is broken, bugs often
follow. The designation relationship is covered in more detail in Section 13.6.

Refinement. Refinement is a relationship between a low-detail and a high-detail
model of the same thing. It is used to relate a boundary model with an internals
model, since they are both models of the same thing, but vary in the details that they
expose. Refinement is useful because it lets you decompose your design into smaller
pieces. Perhaps the Yinzer system is made up of a client and a server piece, and the
server is made up of several smaller pieces. Refinement can be used to assemble
these parts into a whole, and vice versa. The mechanics of refinement are discussed
in depth in Section 13.7.

Refinement is also used to relate the design model with the code model, but there
it is not so straightforward. The structural elements in the design model map neatly
to the structural elements in the code model. For example, a module in the design
maps to packages in the code, and a component in the design maps to a set of classes
in the code.



118 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

�����

��������	
��

Ó������

�������	
���

�����������

��������������������

Ó������

�
���	
���

���������������������������	�����������

�����������	��������	�����������	����

�� ��������	�����	�����	��������
���������	����	�

������������������� ��		����������	�����

������������������	�

�����������������������

Figure 7.3: The refinement relationship ensures that concepts you choose from the domain corre-
spond to types or data structures in your design. Be aware that there are elements in the design
(invariants, constraints, styles) that cannot be expressed in programming languages.

However, as shown in Figure 7.3, other parts of the design model are absent in
the code model: invariants, constraints, and architectural styles. Essentially no main-
stream programming languages can directly express the constraints from the design
model. It is true that constraints such as “all web requests must complete within 1
second”, or “adhere to the pipe-and-filter style” can be respected by the code but they
cannot be directly expressed. This gap between design and code models is discussed
in more depth in Section 10.1.

7.4 Views of a master model

In your head, you understand how any number of systems work and carry around
models that describe them, such as models of your neighborhood or how you manage
your household. From time to time, you sketch out excerpts of those models, such as
a map for a friend showing him how to get to that great restaurant, or you write down
a list of groceries. These excerpts are consistent with that comprehensive model from
your head. For example, you could have written out a full map for your friend, but
presumably the one you drew is accurate so far as it goes, and is sufficient to get him
there. And your grocery list represents the difference between your eating plans and
the contents of your refrigerator.

The domain, design, and code models are comprehensive models like these. They
are jam-packed full of details since, conceptually at least, they contain everything
that you know about those topics. It would be difficult or impossible to write down
all those details, and even keeping them straight in your head is difficult. So, if you
want to use a model to reason about security, scalability, or any other reason, you
need to winnow down the details so that you can see the relevant factors clearly. This
is done with views.



7.4. VIEWS OF A MASTER MODEL 119

�����

��������	
��Ó�����

�����

�����

	��
���

�����
�������

�����

�
������

���

Figure 7.4: The domain model acts as a master model containing all details. Views show selected
details from the master model. Because they are all views of the same master model, all of the
views are consistent with each other.

Definition. A view, also called a projection, shows a defined subset of a model’s de-
tails, possibly with a transformation. The domain, design, and code models each have
many standard views. Views of the domain model include lists of concepts, lists of
relationships between them, and scenarios that show how the concepts and relation-
ships change over time (see Figure 7.4). Design views include the system context
diagram and the deployment diagram. You can invent new views as appropriate.

Philippe Kruchten, in his paper on 4+1 views of architecture, showed that it is
impractical to use a single diagram to express everything about your architecture
and design (Kruchten, 1995). He explained that you need distinct architectural views
because each has its own abstractions, notation, concerns, stakeholders, and patterns.
Each view can use an appropriate notation and focus on a single concern, which
makes it easy to understand. Together, the views comprise a full architecture model,
and each view presents a subset of the details from that full model.

View consistency. Each view (or diagram) you create of a domain, design, or code
model shows a single perspective on that model, exposing some details and hiding
others. The diagrams are not isolated parts of the model, like drawers in a cabinet.
Instead, they are live projections of the model and the views are consistent with each
other. So if the model changes, the views do too. House blueprints are views of a
house (or its design) so you expect them to be consistent with each other.

For example, imagine that you have two views of the domain model: a list of
concepts in the networking and job advertisement domain (such as Ads, Jobs, and
Contacts), and a scenario (a story) describing them. We will describe scenarios in
more detail soon, but for now consider it a story told about how the domain concepts
interact over time. If you were to revise the scenario to reference a new domain
concept, like a declined invitation to join a contact network, you would expect to see
that concept in the list of defined concepts. If it is not there, it is a bug in your domain
model.



120 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

Master models. The domain, design, and code models are each conceptually a sin-
gle master model. Every view you draw must be consistent with that master model.
Think of it this way: when you revised the scenario to refer to a new concept, your
understanding of the master model was revised. Since any other view is derived from
the master model, it should reflect your new understanding. Disregarding pragmatics
for a moment, all of the diagrams you build should be consistent at all times with
each other because that is the way that you, in your mind, understand the domain
to work. Pragmatically, however, while you are building models there will be times
when they are inconsistent with each other, but you strive to eliminate those bugs.

To reinforce the idea of unified and consistent models, it may be helpful to imag-
ine a programming environment where all of these elements fit together and are
typechecked. In that programming environment, a scenario that tried to refer to a
concept that was not defined in the master model would yield a type checking error.

Discussing views formally makes them sound difficult, but in reality people can
use them with almost no effort. For example, you can imagine your bookcase as it is
now, or imagine it with only the red books, or imagine it with the red books rotated so
that you can see the cover instead of the spine. Each of these is a view of your master
model of the bookcase. Notice that while you have never written down a model of
your bookcase, you nonetheless have one in your head that you can manipulate. One
of the challenges in software development is ensuring that developers, subject matter
experts, and others all have the same master model in their heads.

Examples of master models. Master models are a helpful concept because they ex-
plain what your views refer to, but their abstractness can be confusing. The most
straightforward example of a master model is an already existing system. You can cre-
ate many views of that system, say your neighborhood. You do not have a complete
model of your neighborhood written down anywhere, but you do have the neighbor-
hood itself. Views of the neighborhood can be tested against the neighborhood to see
if they are consistent with that master model.

Another example of a master model is a system that will be built. Unlike your
neighborhood, this system does not yet exist, so it is a bit trickier to build views of
it and ensure the views are consistent. Yet somehow things tend to work out OK.
You might embark on a project to renovate a room in your house without writing
down any explicit models, but you must have a master model in your head in some
form. That model includes details about what should happen when (for example,
demolition happens before painting) and cost estimates. That model in your head is
likely incomplete, so views of it will necessarily be incomplete too.

Here are some concrete examples of master models of software systems. The
master model may be the system you previously built or a system you plan to build. It
can be a combination of the two, such as an existing system with planned additions.
Or it could be even more complex, such as a model of the system as you expect it to



7.5. OTHER WAYS TO ORGANIZE MODELS 121

look at three-month intervals over the next few years.

Limiting size and focusing attention. You use views in modeling to limit the size of
the diagrams and to focus attention. Imagine how confusing a medium-sized domain
model would be if you tried to show all the concepts, definitions, behaviors, etc.,
on the same diagram. You may have seen the giant printouts of corporate database
schemas taped to a wall somewhere and seen people trying to use them by putting a
finger in one place and tracing the lines to other parts of the diagram. Views avoid
that.

7.5 Other ways to organize models

The canonical model structure from this chapter consists of a domain model, a design
model, and a code model. This basic organization of models has a long history, visible
in the Syntropy software development process (Cook and Daniels, 1994), though it
probably traces back even further.

Other authors have proposed similar model structures, and while there are some
differences in their organizations and nomenclature, there is a core similarity shared
by all. With only a little bit of squinting, one can identify the domain, design (bound-
ary and internals), and code models. Figure 7.5 is a summary that maps this book’s
model names to some of those found elsewhere.

Despite the broad strokes of similarity between authors, there are differences.
The one concept that does not align well across authors is requirements, because it
can mean different things to different people. Requirements models could overlap
with business models, domain models, boundary models, or internals models.

7.6 Business modeling

There is a kind of model not found in this book’s canonical model structure: business
models. Business models describe what a business or organization does and why it
does it. Different businesses in the same domain will have different strategies, capa-
bilities, organizations, processes, and goals and therefore different business models.

Domain modeling is related to the field of business modeling, which includes not
only facts but also decisions and goals that organizations must make. Someone at
some point decides what the organization does and the processes it follows. Some of
the processes are partly or fully automated with software. The goals and decisions of
an organization can be changed and can be influenced by the software that you build
and buy.

So why include domain models but not business models in this book? This book
includes domain modeling because misunderstanding the domain is a common cause



122 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

Business
Model

Domain
Model

Design Model Code
Model

Boundary
Model

Internals
Model

Bosch System
context

Component
design

Code

Cheesman &
Daniels

Business
concept

Type specs Component
architecture

Code

D’Souza
(MAp)

Business
architec-

ture

Domain Blackbox Whitebox Code

Software
Engineering
Institute (SEI)

Requirements Architecture Code

Jackson Domain Domain +
machine

Machine

RUP Business
modeling

Business
modeling

Requirements Analysis &
design

Code

Syntropy Essential Specification Implementation Code

Figure 7.5: A table summarizing the models proposed by various authors and how they map to the
business, domain, design (boundary, internals), and code models found in this book.

of failure in IT projects. Misunderstanding business processes can also cause failures,
but those are rarely engineering failures.

7.7 Use of UML

This book uses Unified Modeling Language (UML) notation because it is ubiquitous
and its addition of architectural notation in UML 2.0 has brought it visually closer to
special purpose architecture languages.

This book deviates from strict UML in a few places by augmenting UML diagram
elements with line style and shading.

• In UML, connectors can be solid lines or ball-and-socket style. They are distin-
guished using stereotypes to indicate their types. In this book, connectors are



7.8. CONCLUSION 123

shown using a variety of line styles, which is a more compact way to convey
their types and can be less cluttered.

• In UML, a port’s type is shown with a text label near it. This book uses that
style, but it sometimes clutters the diagram, in which case ports are shaded and
defined in a legend. Not all UML tools allow shading or coloring of ports.

Any remaining deviations from UML are inadvertent.

7.8 Conclusion

Once you begin to build models of your system, you realize that understanding and
tracking lots of little models is hard, but building a single gigantic model is imprac-
tical. The strategy proposed in this chapter is to build small models that fit into a
canonical model structure. If you understand the canonical structure then you will
understand where each model fits in.

The first big idea was to use designation and refinement to create models that
differ in their abstraction. The primary models are the domain model, design model,
and code model, and they range from abstract to concrete. The second big idea was
to use views to zoom in on the details of a model. Since the views are all projections
of a single master model, their details are consistent (or are intended to be). In
order to hierarchically nest design models, you use refinement to relate boundary
and internals models.

Coaches see and understand more than rookies not because they have sharper
eyes, but because they have a conceptual model that helps them categorize what
they are seeing. This chapter describes the entire canonical model structure in detail,
but do not let this alarm you. In practice you would rarely, if ever, create every
possible model and view. Once you have internalized these ideas, they will help you
to understand where a given detail, diagram, and model fits. As shown in the case
study (Chapter 4) and the chapter on the risk-driven model (Chapter 3), following
a risk-driven approach to architecture encourages you to build a subset of models,
ones that help you reduce risks you have identified. This chapter, and subsequent
ones, provides detailed descriptions to help you can internalize the models and thus
be better at building software, not to encourage you towards analysis paralysis.

7.9 Further reading

This book is a synthesis of the architectural modeling approaches invented by other
authors. It has three primary influences. The first is the work on modeling com-
ponents in UML from D’Souza and Wills (1998) and Cheesman and Daniels (2000),
which focus primarily on modeling functionality. The second is the quality attribute



124 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

centric approach from the Software Engineering Institute (Bass, Clements and Kaz-
man, 2003; Clements et al., 2010) and Carnegie Mellon University (Shaw and Garlan,
1996). The third is the agile software development community (Boehm and Turner,
2003; Ambler, 2002) which encourages efficient software development practices.

There are several good books that describe the general concepts of software ar-
chitecture. Bass, Clements and Kazman (2003), describes a quality-attribute centric
view of software architecture and provides case studies of applying their techniques.
Taylor, Medvidović and Dashofy (2009) is a more modern treatment and is logically
organized like a textbook. Shaw and Garlan (1996) is becoming dated but is the best
book for understanding the promise of software architecture. Clements et al. (2010)
is an excellent reference book for architecture concepts and notations (and also has
a useful appendix on using UML as an architecture description language). These
books rarely venture down into objects and design, but D’Souza and Wills (1998) and
Cheesman and Daniels (2000) do, showing how architecture fits into object-oriented
design.

Probably more than any other book, Bass, Clements and Kazman (2003) has
shaped the way the field thinks about software architecture, shifting the focus away
from functionality and towards quality attributes. It describes not only the theory but
also processes for analyzing architectures and discovering quality attribute require-
ments. The book also contains a great discussion of the orthogonality of functionality
and quality attributes.

Rozanski and Woods (2005) offer perhaps the most complete treatment of how to
understand and use multiple views in software architecture. It also contains valuable
checklists relating to several standard concerns.

The simplest pragmatic approach to component-based development is found in
Cheesman and Daniels (2000). They lay out an organizational structure for models
using UML and treat components as abstract data types with strict encapsulation
boundaries. A similar approach, but with greater detail, is found in D’Souza and Wills
(1998). Both emphasize detailed specifications, such as pre- and post-conditions, as a
way to catch errors during design. This book de-emphasizes pre- and post-conditions
because on most projects they are too expensive, but the mindset they encourage is
excellent.

The best book at articulating a vision of software engineering that includes soft-
ware architecture is probably Shaw and Garlan (1996). While reading it, it is difficult
not to share their enthusiasm for how architecture can help our field.

The nuts and bolts of architectural modeling, including pitfalls, are well described
by Clements et al. (2010). One of the book’s goals is to teach readers how to doc-
ument the models in a documentation package, which can be important on large
projects.

To date, the most comprehensive treatment of software architecture is by Taylor,



7.9. FURTHER READING 125

Medvidović and Dashofy (2009) in their textbook on software architecture. It covers
real-world examples of software architecture as well as research developments on
formalisms and analysis.

Developers working in the field of Information Technology (IT) will be well served
by Ian Gorton’s treatment of software architecture, as his book covers not only the
basics of software architecture, but also the common technologies in IT, such as Enter-
prise Java Beans (EJB), Message-Oriented Middleware (MOM), and Service Oriented
Architecture (SOA) (Gorton, 2006).

Using abstraction to organize a stack of models is an old technique. It is used in
the Syntropy object oriented design method (Cook and Daniels, 1994) and is central
to Cheesman and Daniels (2000), Fowler (2003a), and D’Souza and Wills (1998).

Many authors have suggested ways of organizing and relating architecture mod-
els. Jan Bosch models the system context, the archetypes, and the main components
(Bosch, 2000). John Cheesman and John Daniels propose building a model of the
requirements (a business concept model and a scenario model) and a model of the
system specification (a business type model, interface specifications, component spec-
ifications, and the component architecture) (Cheesman and Daniels, 2000). Desmond
D’Souza, in MAp, suggests modeling the business architecture, the domain, and the
design as a blackbox and a whitebox (D’Souza, 2006). David Garlan conceives as ar-
chitecture being a bridge between the requirements and the implementation (Garlan,
2003). Michael Jackson suggests modeling the domain, the domain with the machine,
and the machine (Jackson, 1995). Jackson’s primary focus is on system requirements
engineering, not design, but his specifications overlap well with design. The Rational
Unified Process (RUP) does not advocate specific models, but suggests activities for
business modeling, requirements, and analysis & design (Kruchten, 2003).

Every developer should be familiar with the 4+1 architecture views paper
(Kruchten, 1995), but also be aware that it is just one of many different sets of views
that have been proposed for architecture, such as the Siemens Four Views (Hofmeis-
ter, Nord and Soni, 2000).

You should also be aware of the IEEE standard description of software architec-
ture, IEEE 1471-2000 (Society, 2000). In it, you will find most of the same concepts as
in this book. It has a few additions and differences worth noting. While it uses views,
it treats them as requirements from the viewpoint of a stakeholder focused on a partic-
ular concern, rather than as projections of a consistent master model, what it would
call an architecture description. It also describes the environment the system inhabits,
its mission, and library viewpoints (which are reusable viewpoint definitions).

Authors are increasingly paying attention to business process modeling in addi-
tion to domain modeling. Martin Ould provides a practical process for modeling
business processes (Ould, 1995). Desmond D’Souza describes how to connect busi-
ness processes to software architecture by connecting business goals to system goals



126 CHAPTER 7. CONCEPTUAL MODEL OF SOFTWARE ARCHITECTURE

(D’Souza, 2006).
The relationship between software architecture (specifically enterprise architec-

ture) and business strategy is covered in Ross, Weill and Robertson (2006). As soft-
ware developers, we perhaps assume that the natural future state should be that all
systems can inter-operate. The surprising thesis of the book is that the level of inte-
gration should relate to the chosen business strategy.


